Разделы презентаций


M/EEG source analysis Rik Henson MRC CBU, Cambridge (with thanks to Christophe

Содержание

OverviewForward Models for M/EEGVariational Bayesian Dipole Estimation (ECD)Empirical Bayesian Distributed EstimationMultimodal integration

Слайды и текст этой презентации

Слайд 1M/EEG source analysis

Rik Henson
MRC CBU, Cambridge

(with thanks to Christophe Phillips,

Jeremie Mattout, Gareth Barnes, Jean Daunizeau, Stefan Kiebel and Karl

Friston)
M/EEG source analysisRik HensonMRC CBU, Cambridge(with thanks to Christophe Phillips, Jeremie Mattout, Gareth Barnes, Jean Daunizeau, Stefan

Слайд 2Overview
Forward Models for M/EEG

Variational Bayesian Dipole Estimation (ECD)

Empirical Bayesian Distributed

Estimation

Multimodal integration

OverviewForward Models for M/EEGVariational Bayesian Dipole Estimation (ECD)Empirical Bayesian Distributed EstimationMultimodal integration

Слайд 3Overview
Forward Models for M/EEG

Variational Bayesian Dipole Estimation (ECD)

Empirical Bayesian Distributed

Estimation

Multimodal integration

OverviewForward Models for M/EEGVariational Bayesian Dipole Estimation (ECD)Empirical Bayesian Distributed EstimationMultimodal integration

Слайд 4Likelihood Prior
Posterior

Evidence
Bayesian Perspective
Forward Problem
Inverse Problem
Data
Parameters
Model

Likelihood     PriorPosterior     EvidenceBayesian PerspectiveForward ProblemInverse ProblemDataParametersModel

Слайд 5Likelihood
Forward Problem: Physics
Kirkoff’s law:
Electrical potential
Quasi-static
Maxwell’s Equations:
Orientation
Location
Current density:
(EEG)
(MEG)

LikelihoodForward Problem: PhysicsKirkoff’s law:Electrical potentialQuasi-staticMaxwell’s Equations:OrientationLocationCurrent density:(EEG)(MEG)

Слайд 6Likelihood
Forward Problem: Physics
Orientation
Location
depends on:
Can have analytic or numerical form…
location (orientation)

of sensors
geometry of head
conductivity of head
(source space)

LikelihoodForward Problem: PhysicsOrientationLocationdepends on:	Can have analytic or numerical form…		location (orientation) of sensors		geometry of head		conductivity of head		(source space)

Слайд 7Forward Problem: Head Models
Concentric Spheres:

Pros: Analytic; Fast to compute

Cons:

Head not spherical; Conductivity not homogeneous
Boundary (or Finite) Element Models:

Pros: Realistic

geometry
Homogeneous conductivity within boundaries

Cons: Numeric; Slow
Approximation Errors

Other approaches (for MEG): Fit local spheres to each sensor;
Single shell, spherical approx (Nolte)

Forward Problem: Head Models 	Concentric Spheres:Pros: 	Analytic; Fast to computeCons: 	Head not spherical; 	Conductivity not homogeneousBoundary (or

Слайд 8Forward Problem: Meshes
3 important surfaces for BEMs are those with

large changes in conductivity:
Scalp (skin-air boundary)
Outer Skull (bone-skin boundary)
Inner Skull

(CSF-bone boundary)

(Represented as tessellated triangular meshes)

Extracting these surfaces from an MRI is difficult, eg, because CSF-bone T1-contrast is poor (use PD?)…

A fourth important surface (for some solutions) is:
Cortex (WM-GM boundary)

Extracting this surface from an MRI is very difficult because so convoluted (though FreeSurfer)…

Forward Problem: Meshes3 important surfaces for BEMs are those with large changes in conductivity:	Scalp (skin-air boundary)	Outer Skull

Слайд 9Forward Problem: Canonical Meshes
Rather than extract surfaces from individuals MRIs,

why not warp Template surfaces from an MNI brain based

on spatial (inverse) normalisation?

Henson et al (2009), Neuroimage

Forward Problem: Canonical MeshesRather than extract surfaces from individuals MRIs, why not warp Template surfaces from an

Слайд 10fMRI time-series
Motion Correct
Anatomical MRI
Coregister
Deformation
Estimate Spatial Norm
Spatially normalised
Smooth
Smoothed
Template
Recap: (Spatial Normalisation)

fMRI time-seriesMotion CorrectAnatomical MRICoregisterDeformationEstimate Spatial NormSpatially normalisedSmoothSmoothedTemplateRecap: (Spatial Normalisation)

Слайд 11Forward Problem: Canonical Meshes
Rather than extract surfaces from individuals MRIs,

why not warp Template surfaces from an MNI brain based

on spatial (inverse) normalisation?

“Canonical”

(Also provides a 1-to-1 mapping across subjects, so source solutions can be written directly to MNI space, and group-inversion applied; see later)

Given that surfaces are part of the forward model (m), can use the model evidence to determine whether Canonical Meshes are sufficient

Henson et al (2009), Neuroimage

Mattout et al (2007), Comp Int & Neuro

Individual Canonical Template
(Inverse-Normalised)

Forward Problem: Canonical MeshesRather than extract surfaces from individuals MRIs, why not warp Template surfaces from an

Слайд 12Likelihood
Forward Problem: ECD vs Distributed
Orientation
Location
For small number of Equivalent Current

Dipoles (ECD) anywhere in brain:
is linear in but

non-linear in


For (large) number of (Distributed) dipoles with fixed orientation and location:
is linear in

LikelihoodForward Problem: ECD vs DistributedOrientationLocationFor small number of Equivalent Current Dipoles (ECD) anywhere in brain:		is linear in

Слайд 13Overview
Forward Models for M/EEG

Variational Bayesian Dipole Estimation (ECD)

Empirical Bayesian Distributed

Estimation

Multimodal integration

OverviewForward Models for M/EEGVariational Bayesian Dipole Estimation (ECD)Empirical Bayesian Distributed EstimationMultimodal integration

Слайд 14Inverse Problem: VB-ECD
Standard ECD approaches iterate location/orientation (within a brain

volume) until fit to sensor data is maximised (i.e, error

minimised). But:
Local Minima (particularly when multiple dipoles)
Question of how many dipoles?

With a Variational Bayesian (VB) framework, priors can be put on the locations and orientations (and strengths) of dipoles (e.g, symmetry constraints)

Kiebel et al (2008), Neuroimage

Inverse Problem: VB-ECDStandard ECD approaches iterate location/orientation (within a brain volume) until fit to sensor data is

Слайд 15Inverse Problem: VB-ECD
Maximising the (free-energy approximation to the) model evidence

offers a natural answer to question of the number of

dipoles

Kiebel et al (2008), Neuroimage

Inverse Problem: VB-ECDMaximising the (free-energy approximation to the) model evidence offers a natural answer to question of

Слайд 16Inverse Problem: DCM
Dynamic Causal Modelling (DCM) can be seen as

a source localisation (inverse) method that includes temporal constraints on

the source activities

David et al (2011), Journal of Neuroscience

Inverse Problem: DCMDynamic Causal Modelling (DCM) can be seen as a source localisation (inverse) method that includes

Слайд 17Overview
Forward Models for M/EEG

Variational Bayesian Dipole Estimation (ECD)

Empirical Bayesian Distributed

Estimation

Multimodal integration

OverviewForward Models for M/EEGVariational Bayesian Dipole Estimation (ECD)Empirical Bayesian Distributed EstimationMultimodal integration

Слайд 18Y = Data n sensors
J = Sources p>>n sources
L =

Leadfields n sensors x p sources
E = Error

n sensors…
…draw from Gaussian covariance C(e)

…linear Forward Model for MEG/EEG:

Fact that p>>n means under-determined problem (cf. GLM and ECD)…
…so some form of regularisation needed, e.g,“Weighted L2-norm”…

Inverse Problem: Distributed

Given p sources fixed in location (e.g, on a cortical mesh)…

(Free orientations can be simulated by having 2-3 columns in L per location)

Y = Data 	n sensorsJ = Sources 	p>>n sourcesL = Leadfields	n sensors x p sourcesE = Error

Слайд 19Phillips et al (2002), Neuroimage
Inverse Problem: Standard L2-norm
“Minimum Norm”
“Loreta” (D=Laplacian)
“Depth-Weighted”
“Beamformer”
“Tikhonov

Solution”

Phillips et al (2002), NeuroimageInverse Problem: Standard L2-norm“Minimum Norm”“Loreta” (D=Laplacian)“Depth-Weighted”“Beamformer”“Tikhonov Solution”

Слайд 20Phillips et al (2005), Neuroimage
Likelihood:
C(e) = n x n Sensor

(error) covariance
Prior:
C(j) = p x p Source (prior) covariance
Posterior:
Inverse Problem:

Equivalent PEB

Parametric Empirical Bayesian (PEB) 2-level hierarchical form:

Maximum A Posteriori (MAP) estimate:

cf Classical Tikhonov:

Phillips et al (2005), NeuroimageLikelihood:C(e) = n x n Sensor (error) covariancePrior:C(j) = p x p Source

Слайд 21Specifying (co)variance components (priors/regularisation):
1. Sensor components, (error):
C

= Sensor/Source covariance
Q = Covariance components
λ = Hyper-parameters

2. Source components,

(priors/regularisation):

“IID” (white noise):

Empty-room:

“IID” (min norm):

Multiple Sparse
Priors (MSP):

Friston et al (2008) Neuroimage

Inverse Problem:
Covariance Components (Priors)

Specifying (co)variance components (priors/regularisation):1. Sensor components,    (error):C = Sensor/Source covarianceQ = Covariance componentsλ =

Слайд 22Henson et al (2007) Neuroimage
When multiple Q’s are correlated, estimation

of hyperparameters λ can be difficult (eg local maxima), and

they can become negative (improper for covariances)

To overcome this, one can:

uninformative priors are then “turned-off” (cf. “Automatic Relevance Detection”)

1) impose positivity on hyperparameters:

2) impose weak, shrinkage hyperpriors:

Inverse Problem: HyperPriors

Henson et al (2007) NeuroimageWhen multiple Q’s are correlated, estimation of hyperparameters λ can be difficult (eg

Слайд 23Henson et al (2007) Neuroimage
When multiple Q’s are correlated, estimation

of hyperparameters λ can be difficult (eg local maxima), and

they can become negative (improper for covariances)

To overcome this, one can:

uninformative priors are then “turned-off” (cf. “Automatic Relevance Detection”)

1) impose positivity on hyperparameters:

2) impose weak, shrinkage hyperpriors:

Inverse Problem: HyperPriors

Henson et al (2007) NeuroimageWhen multiple Q’s are correlated, estimation of hyperparameters λ can be difficult (eg

Слайд 24Friston et al (2008) Neuroimage
Fixed
Variable
Data
Source and sensor space
Inverse Problem: Full

(DAG) model

Friston et al (2008) NeuroimageFixedVariableDataSource and sensor spaceInverse Problem: Full (DAG) model

Слайд 25Friston et al (2002) Neuroimage
1. Obtain Restricted Maximum Likelihood (ReML)

estimates of the hyperparameters (λ) by maximising the variational “free

energy” (F):

2. Obtain Maximum A Posteriori (MAP) estimates of parameters (sources, J):

3. Maximal F approximates Bayesian (log) “model evidence” for a model, m:

Complexity

(…where and are the posterior mean and covariance of hyperparameters)

Accuracy

Inverse Problem: Estimation

Friston et al (2002) Neuroimage1. Obtain Restricted Maximum Likelihood (ReML) estimates of the hyperparameters (λ) by maximising

Слайд 26Hyperpriors allow the extreme of 100’s source priors, or MSP
Inverse

Problem: Multiple Sparse Priors

Friston et al (2008) Neuroimage

Hyperpriors allow the extreme of 100’s source priors, or MSPInverse Problem: Multiple Sparse Priors…Friston et al (2008)

Слайд 27Hyperpriors allow the extreme of 100’s source priors, or MSP
Inverse

Problem: Multiple Sparse Priors
Friston et al (2008) Neuroimage

Hyperpriors allow the extreme of 100’s source priors, or MSPInverse Problem: Multiple Sparse PriorsFriston et al (2008)

Слайд 28Summary:

Automatically “regularises” in principled fashion…
…allows for multiple constraints (priors)…
…to the

extent that multiple (100’s) of sparse priors possible (MSP)…
…(or multiple

error components or multiple fMRI priors)…
…furnishes estimates of model evidence, so can compare constraints

Inverse Problem: PEB Summary

Summary:Automatically “regularises” in principled fashion……allows for multiple constraints (priors)……to the extent that multiple (100’s) of sparse priors

Слайд 29Overview
Forward Models for M/EEG

Variational Bayesian Dipole Estimation (ECD)

Empirical Bayesian Distributed

Estimation

Multi-modal and multi-subject integration

OverviewForward Models for M/EEGVariational Bayesian Dipole Estimation (ECD)Empirical Bayesian Distributed EstimationMulti-modal and multi-subject integration

Слайд 30Multi-subject Integration (Group Inversion)
Specifying (co)variance components (priors/regularisation):
1. Sensor components,

(error):
C = Sensor/Source covariance
Q = Covariance components
λ =

Hyper-parameters

2. Source components, (priors/regularisation):

“IID” (white noise):

Empty-room:

“IID” (min norm):

Multiple Sparse
Priors (MSP):

Friston et al (2008) Neuroimage

Multi-subject Integration (Group Inversion)Specifying (co)variance components (priors/regularisation):1. Sensor components,    (error):C = Sensor/Source covarianceQ =

Слайд 31Specifying (co)variance components (priors/regularisation):
1. Sensor components, (error):
C

= Sensor/Source covariance
Q = Covariance components
λ = Hyper-parameters

“IID” (white noise):
Empty-room:
2.

Optimise Multiple Sparse Priors by pooling across subjects

Litvak & Friston (2008) Neuroimage

Multi-subject Integration (Group Inversion)

Specifying (co)variance components (priors/regularisation):1. Sensor components,    (error):C = Sensor/Source covarianceQ = Covariance componentsλ =

Слайд 32Litvak & Friston (2008) Neuroimage
Fixed
Variable
Data
Source and sensor space
Multi-subject Integration (as

before)

Litvak & Friston (2008) NeuroimageFixedVariableDataSource and sensor spaceMulti-subject Integration (as before)

Слайд 33Litvak & Friston (2008) Neuroimage
Fixed
Variable
Data
Source and sensor space
Multi-subject Integration

Litvak & Friston (2008) NeuroimageFixedVariableDataSource and sensor spaceMulti-subject Integration

Слайд 34Concatenate data across subjects
Common source-level priors:
Subject-specific sensor-level priors:
Litvak & Friston

(2008) Neuroimage
…having projected to an “average” leadfield matrix
Multi-subject Integration: Leadfield

Alignment
Concatenate data across subjectsCommon source-level priors:Subject-specific sensor-level priors:Litvak & Friston (2008) Neuroimage…having projected to an “average” leadfield

Слайд 35Litvak & Friston (2008) Neuroimage
MMN
MSP
MSP (Group)
Multi-subject Integration: Results

Litvak & Friston (2008) NeuroimageMMNMSPMSP (Group)Multi-subject Integration: Results

Слайд 36Multi-modal Integration

1. Symmetric integration (fusion) of MEG + EEG

2. Asymmetric

integration of M/EEG + fMRI

3. Full fusion of M/EEG +

fMRI?

Multi-modal Integration1. Symmetric integration (fusion) of MEG + EEG	2. Asymmetric integration of M/EEG + fMRI	3. Full fusion

Слайд 37fMRI
MEG
? (future)
Data:
Causes (hidden):
Generative (Forward)
Models:
Balloon
Model
Head
Model
?
EEG
Head
Model
“Neural”
Activity
(inversion)
Multi-modal Integration
Daunizeau et al (2007),

Neuroimage

fMRIMEG? (future)Data:Causes (hidden):Generative (Forward)Models:BalloonModelHeadModel ? EEGHeadModel“Neural”Activity(inversion)Multi-modal IntegrationDaunizeau et al (2007), Neuroimage

Слайд 38Asymmetric
Integration
fMRI
MEG
? (future)
Data:
Causes (hidden):
Generative (Forward)
Models:
Balloon
Model
Head
Model
?
EEG
Head
Model
“Neural”
Activity
Symmetric
Integration
(Fusion)
Daunizeau et al (2007), Neuroimage
Multi-modal

Integration

AsymmetricIntegrationfMRIMEG? (future)Data:Causes (hidden):Generative (Forward)Models:BalloonModelHeadModel ? EEGHeadModel“Neural”ActivitySymmetricIntegration(Fusion)Daunizeau et al (2007), NeuroimageMulti-modal Integration

Слайд 39Multi-modal Integration

1. Symmetric integration (fusion) of MEG + EEG

2. Asymmetric

integration of M/EEG + fMRI

3. Full fusion of M/EEG +

fMRI?

Multi-modal Integration1. Symmetric integration (fusion) of MEG + EEG	2. Asymmetric integration of M/EEG + fMRI	3. Full fusion

Слайд 40Specifying (co)variance components (priors/regularisation):
1. Sensor components, (error):
C

= Sensor/Source covariance
Q = Covariance components
λ = Hyper-parameters

2. Source components,

(priors/regularisation):

“IID” (white noise):

Empty-room:

“IID” (min norm):

Multiple Sparse
Priors (MSP):

Friston et al (2008) Neuroimage

Symmetric Integration of MEG+EEG

Specifying (co)variance components (priors/regularisation):1. Sensor components,    (error):C = Sensor/Source covarianceQ = Covariance componentsλ =

Слайд 41Specifying (co)variance components (priors/regularisation):
1. Sensor components, (error):
Ci(e) =

Sensor error covariance for ith modality
Qij = jth component for

ith modality
λij = Hyper-parameters

2. Source components, (priors/regularisation):

“IID” (min norm):

Multiple Sparse
Priors (MSP):

E.g, white noise for 2 modalities:

Henson et al (2009) Neuroimage

Symmetric Integration of MEG+EEG

Specifying (co)variance components (priors/regularisation):1. Sensor components,    (error):Ci(e)	= Sensor error covariance for ith modalityQij 	=

Слайд 42Henson et al (2009) Neuroimage
Fixed
Variable
Data
Source and sensor space
Single Modality (as

before)

Henson et al (2009) NeuroimageFixedVariableDataSource and sensor spaceSingle Modality (as before)

Слайд 43Henson et al (2009) Neuroimage
Fixed
Variable
Data
Source and sensor space
Multiple modalities

Henson et al (2009) NeuroimageFixedVariableDataSource and sensor spaceMultiple modalities

Слайд 44Henson et al (2009) Neuroimage
Stack data and leadfields for d

modalities:
Where data / leadfields scaled to have same average /

predicted variance:

mi = Number of spatial modes
(e.g, ~70% of #sensors)

(note: common sources and source priors, but separate error components)

Symmetric Integration of MEG+EEG

Henson et al (2009) NeuroimageStack data and leadfields for d modalities:Where data / leadfields scaled to have

Слайд 45ERs from 12 subjects for 3 simultaneously-acquired Neuromag sensor-types:

RMS fT/m
μV
Faces
Scrambled
fT
Magnetometers


(MEG, 102)
(Planar) Gradiometers
(MEG, 204)
Electrodes
(EEG, 70)
Henson et al (2009)

Neuroimage

150-190ms

Faces - Scrambled

ms

ms

ms

Symmetric Integration of MEG+EEG

ERs from 12 subjects for 3 simultaneously-acquired Neuromag sensor-types:RMS fT/mμVFacesScrambledfTMagnetometers (MEG, 102)(Planar) Gradiometers (MEG, 204)Electrodes (EEG, 70)Henson

Слайд 46

MEG mags

MEG grads

EEG

FUSED

+31 -51 -15

+19 -48 -6

+43 -67 -11

+44 -64 -4

Henson et al (2009) Neuroimage

IID noise for each modality; common MSP for sources

(fixed number of spatial+temporal modes)

Scrambled

150-190ms

Faces – Scrambled,

Faces

Symmetric Integration of MEG+EEG

MEG mags

Слайд 47Henson et al (2009) Neuroimage
Fusing magnetometers, gradiometers and EEG increased

the conditional precision of the source estimates relative to inverting

any one modality alone
(when equating number of spatial+temporal modes)

The maximal sources recovered from fusion were a plausible combination of the ventral temporal sources recovered by MEG and the lateral temporal sources recovered by EEG
(Simulations show the relative scaling of mags and grads agrees with empty-room data)

Symmetric Integration of MEG+EEG

Henson et al (2009) NeuroimageFusing magnetometers, gradiometers and EEG increased the conditional precision of the source estimates

Слайд 48Multi-modal Integration

1. Symmetric integration (fusion) of MEG + EEG

2. Asymmetric

integration of M/EEG + fMRI

3. Full fusion of M/EEG +

fMRI?

Multi-modal Integration1. Symmetric integration (fusion) of MEG + EEG	2. Asymmetric integration of M/EEG + fMRI	3. Full fusion

Слайд 49 Asymmetric Integration of M/EEG+fMRI
Specifying (co)variance components (priors/regularisation):
1. Sensor components,

(error):
C = Sensor/Source covariance
Q = Covariance components
λ

= Hyper-parameters

2. Source components, (priors/regularisation):

“IID” (white noise):

Empty-room:

“IID” (min norm):

Multiple Sparse
Priors (MSP):

Friston et al (2008) Neuroimage

Asymmetric Integration of M/EEG+fMRISpecifying (co)variance components (priors/regularisation):1. Sensor components,    (error):C = Sensor/Source covarianceQ

Слайд 50Henson et al (2010) Hum. Brain Map.
Specifying (co)variance components (priors/regularisation):
1.

Sensor components, (error):
C = Sensor/Source covariance
Q =

Covariance components
λ = Hyper-parameters

“IID” (white noise):

Empty-room:

“IID” (min norm):

fMRI Priors:

# sources

# sources

2. Each suprathreshold fMRI cluster becomes a separate prior

Asymmetric Integration of M/EEG+fMRI

Henson et al (2010) Hum. Brain Map.Specifying (co)variance components (priors/regularisation):1. Sensor components,    (error):C =

Слайд 51Friston et al (2008) Neuroimage
Fixed
Variable
Data
Source and sensor space
Asymmetric Integration of

M/EEG+fMRI

Friston et al (2008) NeuroimageFixedVariableDataSource and sensor spaceAsymmetric Integration of M/EEG+fMRI

Слайд 52Henson et al (2010) Hum. Brain Map.
Fixed
Variable
Data
Source and sensor space
Asymmetric

Integration of M/EEG+fMRI

Henson et al (2010) Hum. Brain Map.FixedVariableDataSource and sensor spaceAsymmetric Integration of M/EEG+fMRI

Слайд 53T1-weighted MRI
Anatomical data
{T,F,Z}-SPM
Gray matter segmentation
Cortical surface extraction
3D geodesic Voronoï diagram
Functional data

1. Thresholding

and connected component labelling

2. Projection onto the cortical surface using

the Voronoï diagram


3. Prior covariance components

Henson et al (2010) Hum. Brain Map.

Asymmetric Integration of M/EEG+fMRI

T1-weighted MRIAnatomical data{T,F,Z}-SPMGray matter  segmentationCortical surface extraction3D geodesic Voronoï diagramFunctional data…1. Thresholding and connected component labelling…2.

Слайд 54SPM{F} for faces versus scrambled faces,
15 voxels, p

clusters from SPM of fMRI data from separate group of

(18) subjects in MNI space

1

2

3

4

5

Henson et al (2010) Hum. Brain Map.

Asymmetric Integration of M/EEG+fMRI

SPM{F} for faces versus scrambled faces, 15 voxels, p

Слайд 55(binarised, variance priors)
Magnetometers (MEG)
*
*
*
*


None Global Local (Valid) Local (Invalid) Valid+Invalid


Electrodes (EEG)

Negative Free Energy (a.u.)
(model evidence)

*

*

*

*

*

*

*

Gradiometers (MEG)

Henson et al (2010) Hum. Brain Map.

Asymmetric Integration of M/EEG+fMRI

(binarised, variance priors)Magnetometers (MEG)****

Слайд 56(binarised, variance priors)
Magnetometers (MEG)
*
*
*
*


Gradiometers (MEG)

None Global Local (Valid) Local (Invalid) Valid+Invalid


Electrodes (EEG)

Negative Free Energy (a.u.)
(model evidence)

*

*

*

*

*

*

*

Henson et al (2010) Hum. Brain Map.

Asymmetric Integration of M/EEG+fMRI

(binarised, variance priors)Magnetometers (MEG)****

Слайд 57(binarised, variance priors)
Magnetometers (MEG)
*
*
*
*


Gradiometers (MEG)

None Global Local (Valid) Local (Invalid) Valid+Invalid


Electrodes (EEG)

Negative Free Energy (a.u.)
(model evidence)

*

*

*

*

*

*

*

Henson et al (2010) Hum. Brain Map.

Asymmetric Integration of M/EEG+fMRI

(binarised, variance priors)Magnetometers (MEG)****

Слайд 583.2 Fusion of MEG+fMRI (Application)
(binarised, variance priors)
Magnetometers (MEG)
*
*
*
*


Gradiometers (MEG)

None Global Local (Valid) Local (Invalid) Valid+Invalid


Electrodes (EEG)

Negative Free Energy (a.u.)
(model evidence)

*

*

*

*

*

*

*

Henson et al (2010) Hum. Brain Map.

3.2 Fusion of MEG+fMRI (Application)(binarised, variance priors)Magnetometers (MEG)****

Слайд 59(binarised, variance priors)
Magnetometers (MEG)
*
*
*
*


Gradiometers (MEG)

None Global Local (Valid) Local (Invalid) Valid+Invalid


Electrodes (EEG)

Negative Free Energy (a.u.)
(model evidence)

*

*

*

*

*

*

*

Henson et al (2010) Hum. Brain Map.

Asymmetric Integration of M/EEG+fMRI

(binarised, variance priors)Magnetometers (MEG)****

Слайд 60 None

Global Local (Valid) Local (Invalid)

Magnetometers (MEG)

Gradiometers (MEG)

Electrodes (EEG)

IID sources and IID noise (L2 MNM)

Henson et al (2010) Hum. Brain Map.

Asymmetric Integration of M/EEG+fMRI

None

Слайд 61 None

Global Local (Valid) Local (Invalid)

Magnetometers (MEG)

Gradiometers (MEG)

Electrodes (EEG)

IID sources and IID noise (L2 MNM)

Henson et al (2010) Hum. Brain Map.

Asymmetric Integration of M/EEG+fMRI

None

Слайд 623.2 Fusion of MEG+fMRI (Application)
fMRI priors counteract superficial bias of

L2-norm
None

Global Local (Valid) Local (Invalid)

Magnetometers (MEG)

Gradiometers (MEG)

Electrodes (EEG)

IID sources and IID noise (L2 MNM)

Henson et al (2010) Hum. Brain Map.

3.2 Fusion of MEG+fMRI (Application)fMRI priors counteract superficial bias of L2-norm

Слайд 63fMRI priors counteract superficial bias of L2-norm

None

Global Local (Valid) Local (Invalid)

Magnetometers (MEG)

Gradiometers (MEG)

Electrodes (EEG)

IID sources and IID noise (L2 MNM)

Henson et al (2010) Hum. Brain Map.

Asymmetric Integration of M/EEG+fMRI

fMRI priors counteract superficial bias of L2-norm         None

Слайд 64Prior 4.
Prior 5.
NB: Priors affect variance, not precise timecourse…
R
L
Gradiometers (MEG)
(5

Local Valid Priors)
Differential Response
(Faces vs Scrambled)
Differential Response
(Faces vs

Scrambled)

Right Posterior Fusiform (rPF) Right Medial Fusiform (rMF) Right Lateral Fusiform (rLF)

Left occipital pole (lOP)

-27 -93 0

+26 -76 -11

+41 -43 -24

+32 -45 -12

-43 -47 -21

Left Lateral Fusiform (lLF)

Differential Response
(Faces vs Scrambled)

Henson et al (2010) Hum. Brain Map.

Asymmetric Integration of M/EEG+fMRI

Prior 4.Prior 5.NB: Priors affect variance, not precise timecourse…RLGradiometers (MEG)(5 Local Valid Priors)Differential Response (Faces vs Scrambled)Differential

Слайд 65Adding a single, global fMRI prior increases model evidence
Adding multiple

valid priors increases model evidence further
Helpful if some fMRI regions

produce no MEG/EEG signal (or arise from neural activity at different times)
Adding invalid priors does not necessarily increase model evidence, particularly in conjunction with valid priors
Can counteract superficial bias of, e.g, minimum-norm
Affects variance but not not precise timecourse

Henson et al (2010) Hum. Brain Map.

Asymmetric Integration of M/EEG+fMRI

Adding a single, global fMRI prior increases model evidenceAdding multiple valid priors increases model evidence further	Helpful if

Слайд 66Multi-modal Integration

1. Symmetric integration (fusion) of MEG + EEG

2. Asymmetric

integration of M/EEG + fMRI

3. Full fusion of M/EEG +

fMRI?

Multi-modal Integration1. Symmetric integration (fusion) of MEG + EEG	2. Asymmetric integration of M/EEG + fMRI	3. Full fusion

Слайд 67 Fusion of fMRI and MEG/EEG?
fMRI
MEG
? (future)
Data:
Causes (hidden):
Balloon
Model
Head
Model
?
EEG
Head
Model
“Neural”
Activity
Fusion

of fMRI + MEG/EEG?

Henson (2010) Biomag

Fusion of fMRI and MEG/EEG?fMRIMEG? (future)Data:Causes (hidden):BalloonModelHeadModel ? EEGHeadModel“Neural”ActivityFusion of fMRI + MEG/EEG?Henson (2010) Biomag

Слайд 68 Fusion of fMRI and MEG/EEG?
Fixed
Variable
Data
Source and sensor space
Henson Et

Al (2011) Frontiers

Fusion of fMRI and MEG/EEG?FixedVariableDataSource and sensor spaceHenson Et Al (2011) Frontiers

Слайд 69 Fusion of fMRI and MEG/EEG?
Henson Et Al (2011) Frontiers
Fixed
Variable
Data
Source

and sensor space

Fusion of fMRI and MEG/EEG?Henson Et Al (2011) FrontiersFixedVariableDataSource and sensor space

Слайд 70Overall Conclusions
SPM offers standard forward models (via FieldTrip)…
(though with unique

option of Canonical Meshes)

2. …but offers unique Bayesian approaches

to inversion:

2.1 Variational Bayesian ECD

2.2 Dynamic Causal Modelling (DCM)

2.3 A PEB approach to Distributed inversion (eg MSP)

3. PEB framework in particular offers multi-subject and
(various types of) multi-modal integration
Overall ConclusionsSPM offers standard forward models (via FieldTrip)…	(though with unique option of Canonical Meshes)2.  …but offers

Слайд 71The End

The End

Слайд 72Likelihood
Forward Problem: Physics
Ohm’s law:
Continuity equation:
Maxwell’s
Equations:
Orientation
Location
Current (nA):

LikelihoodForward Problem: PhysicsOhm’s law:Continuity equation:Maxwell’sEquations:OrientationLocationCurrent (nA):

Слайд 73Inverse Problem: Simulations
Mattout et al (2006)
Multiple constraints: Smooth sources (Qs),

plus valid (Qv) or invalid (Qi) focal prior

Inverse Problem: SimulationsMattout et al (2006)Multiple constraints: Smooth sources (Qs), plus valid (Qv) or invalid (Qi) focal

Слайд 74Inverse Problem: Simulations
Mattout et al (2006)
Multiple constraints: Smooth sources (Qs),

plus valid (Qv) or invalid (Qi) focal prior

Inverse Problem: SimulationsMattout et al (2006)Multiple constraints: Smooth sources (Qs), plus valid (Qv) or invalid (Qi) focal

Слайд 75Inverse Problem: Temporal
Friston et al (2006)
V typically Gaussian autocorrelations…


In

general, temporal correlation of signal (sources) and noise (sensors) will

differ, but can project onto a temporal subspace (via S) such that:

then turns out that EM can simply operate on prewhitened data (covariance), where Y size n x t:

Inverse Problem: TemporalFriston et al (2006) V typically Gaussian autocorrelations…				In general, temporal correlation of signal (sources) and

Слайд 76Inverse Problem: Temporal
Friston et al (2006)


Inverse Problem: TemporalFriston et al (2006)

Слайд 773.2. Fusion of MEG+fMRI
Prior 4.
Prior 5.
fMRI hyperparameters
ln(λ)+32
ln(λ)+32
Participant
Participant
Magnetometers (MEG)
Gradiometers (MEG)
Electrodes (EEG)
Local


Valid
Local
Invalid
Henson et al (2010)

3.2. Fusion of MEG+fMRIPrior 4.Prior 5.fMRI hyperparametersln(λ)+32ln(λ)+32ParticipantParticipantMagnetometers (MEG)Gradiometers (MEG)Electrodes (EEG)Local ValidLocal InvalidHenson et al (2010)

Слайд 78Henson et al (2011) Frontiers
MMN + 3 fMRI priors
MMN +

3 fMRI priors (Group)
Multi-subject Integration: Results

Henson et al (2011) FrontiersMMN + 3 fMRI priorsMMN + 3 fMRI priors (Group)Multi-subject Integration: Results

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика