Other approaches (for MEG): Fit local spheres to each sensor;
Single shell, spherical approx (Nolte)
(Represented as tessellated triangular meshes)
Extracting these surfaces from an MRI is difficult, eg, because CSF-bone T1-contrast is poor (use PD?)…
A fourth important surface (for some solutions) is:
Cortex (WM-GM boundary)
Extracting this surface from an MRI is very difficult because so convoluted (though FreeSurfer)…
Henson et al (2009), Neuroimage
“Canonical”
(Also provides a 1-to-1 mapping across subjects, so source solutions can be written directly to MNI space, and group-inversion applied; see later)
Given that surfaces are part of the forward model (m), can use the model evidence to determine whether Canonical Meshes are sufficient
Henson et al (2009), Neuroimage
Mattout et al (2007), Comp Int & Neuro
Individual Canonical Template
(Inverse-Normalised)
Kiebel et al (2008), Neuroimage
Kiebel et al (2008), Neuroimage
David et al (2011), Journal of Neuroscience
…linear Forward Model for MEG/EEG:
Fact that p>>n means under-determined problem (cf. GLM and ECD)…
…so some form of regularisation needed, e.g,“Weighted L2-norm”…
Inverse Problem: Distributed
Given p sources fixed in location (e.g, on a cortical mesh)…
(Free orientations can be simulated by having 2-3 columns in L per location)
Parametric Empirical Bayesian (PEB) 2-level hierarchical form:
Maximum A Posteriori (MAP) estimate:
cf Classical Tikhonov:
“IID” (white noise):
Empty-room:
“IID” (min norm):
Multiple Sparse
Priors (MSP):
Friston et al (2008) Neuroimage
Inverse Problem:
Covariance Components (Priors)
To overcome this, one can:
uninformative priors are then “turned-off” (cf. “Automatic Relevance Detection”)
1) impose positivity on hyperparameters:
2) impose weak, shrinkage hyperpriors:
Inverse Problem: HyperPriors
To overcome this, one can:
uninformative priors are then “turned-off” (cf. “Automatic Relevance Detection”)
1) impose positivity on hyperparameters:
2) impose weak, shrinkage hyperpriors:
Inverse Problem: HyperPriors
2. Obtain Maximum A Posteriori (MAP) estimates of parameters (sources, J):
3. Maximal F approximates Bayesian (log) “model evidence” for a model, m:
Complexity
(…where and are the posterior mean and covariance of hyperparameters)
Accuracy
Inverse Problem: Estimation
Inverse Problem: PEB Summary
2. Source components, (priors/regularisation):
“IID” (white noise):
Empty-room:
“IID” (min norm):
Multiple Sparse
Priors (MSP):
Friston et al (2008) Neuroimage
Litvak & Friston (2008) Neuroimage
Multi-subject Integration (Group Inversion)
“IID” (white noise):
Empty-room:
“IID” (min norm):
Multiple Sparse
Priors (MSP):
Friston et al (2008) Neuroimage
Symmetric Integration of MEG+EEG
2. Source components, (priors/regularisation):
“IID” (min norm):
Multiple Sparse
Priors (MSP):
E.g, white noise for 2 modalities:
Henson et al (2009) Neuroimage
Symmetric Integration of MEG+EEG
mi = Number of spatial modes
(e.g, ~70% of #sensors)
(note: common sources and source priors, but separate error components)
Symmetric Integration of MEG+EEG
150-190ms
Faces - Scrambled
ms
ms
ms
Symmetric Integration of MEG+EEG
EEG
FUSED
+31 -51 -15
+19 -48 -6
+43 -67 -11
+44 -64 -4
Henson et al (2009) Neuroimage
IID noise for each modality; common MSP for sources
(fixed number of spatial+temporal modes)
Scrambled
150-190ms
Faces – Scrambled,
Faces
Symmetric Integration of MEG+EEG
Symmetric Integration of MEG+EEG
2. Source components, (priors/regularisation):
“IID” (white noise):
Empty-room:
“IID” (min norm):
Multiple Sparse
Priors (MSP):
Friston et al (2008) Neuroimage
“IID” (white noise):
Empty-room:
“IID” (min norm):
fMRI Priors:
# sources
# sources
2. Each suprathreshold fMRI cluster becomes a separate prior
Asymmetric Integration of M/EEG+fMRI
…
3. Prior covariance components
Henson et al (2010) Hum. Brain Map.
Asymmetric Integration of M/EEG+fMRI
1
2
3
4
5
Henson et al (2010) Hum. Brain Map.
Asymmetric Integration of M/EEG+fMRI
None Global Local (Valid) Local (Invalid) Valid+Invalid
Electrodes (EEG)
Negative Free Energy (a.u.)
(model evidence)
*
*
*
*
*
*
*
Gradiometers (MEG)
Henson et al (2010) Hum. Brain Map.
Asymmetric Integration of M/EEG+fMRI
Gradiometers (MEG)
None Global Local (Valid) Local (Invalid) Valid+Invalid
Electrodes (EEG)
Negative Free Energy (a.u.)
(model evidence)
*
*
*
*
*
*
*
Henson et al (2010) Hum. Brain Map.
Asymmetric Integration of M/EEG+fMRI
Gradiometers (MEG)
None Global Local (Valid) Local (Invalid) Valid+Invalid
Electrodes (EEG)
Negative Free Energy (a.u.)
(model evidence)
*
*
*
*
*
*
*
Henson et al (2010) Hum. Brain Map.
Asymmetric Integration of M/EEG+fMRI
Gradiometers (MEG)
None Global Local (Valid) Local (Invalid) Valid+Invalid
Electrodes (EEG)
Negative Free Energy (a.u.)
(model evidence)
*
*
*
*
*
*
*
Henson et al (2010) Hum. Brain Map.
Gradiometers (MEG)
None Global Local (Valid) Local (Invalid) Valid+Invalid
Electrodes (EEG)
Negative Free Energy (a.u.)
(model evidence)
*
*
*
*
*
*
*
Henson et al (2010) Hum. Brain Map.
Asymmetric Integration of M/EEG+fMRI
Magnetometers (MEG)
Gradiometers (MEG)
Electrodes (EEG)
IID sources and IID noise (L2 MNM)
Henson et al (2010) Hum. Brain Map.
Asymmetric Integration of M/EEG+fMRI
Magnetometers (MEG)
Gradiometers (MEG)
Electrodes (EEG)
IID sources and IID noise (L2 MNM)
Henson et al (2010) Hum. Brain Map.
Asymmetric Integration of M/EEG+fMRI
Magnetometers (MEG)
Gradiometers (MEG)
Electrodes (EEG)
IID sources and IID noise (L2 MNM)
Henson et al (2010) Hum. Brain Map.
Magnetometers (MEG)
Gradiometers (MEG)
Electrodes (EEG)
IID sources and IID noise (L2 MNM)
Henson et al (2010) Hum. Brain Map.
Asymmetric Integration of M/EEG+fMRI
Right Posterior Fusiform (rPF) Right Medial Fusiform (rMF) Right Lateral Fusiform (rLF)
Left occipital pole (lOP)
-27 -93 0
+26 -76 -11
+41 -43 -24
+32 -45 -12
-43 -47 -21
Left Lateral Fusiform (lLF)
Differential Response
(Faces vs Scrambled)
Henson et al (2010) Hum. Brain Map.
Asymmetric Integration of M/EEG+fMRI
Henson et al (2010) Hum. Brain Map.
Asymmetric Integration of M/EEG+fMRI
then turns out that EM can simply operate on prewhitened data (covariance), where Y size n x t:
Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть