Разделы презентаций


Необыкновенная девочка

Содержание

Подумай, как выполняли счет первобытные люди?

Слайды и текст этой презентации

Слайд 1Необыкновенная девочка
Ей было 1100 лет
Она в 101 класс ходила
В портфеле

по 100 книг носила
Всё это правда,
А не бред
Когда пыля 10

ног,
Она бежала по дороге
За ней всегда бежал щенок
С одним хвостом
Зато 100 – ногий.
И 10 удивлённых глаз
Смотрели в этот мир привычно
Но станет всё совсем обычно
Когда поймете наш рассказ!
Необыкновенная девочкаЕй было 1100 летОна в 101 класс ходилаВ портфеле по 100 книг носилаВсё это правда,А не

Слайд 2Подумай, как выполняли счет первобытные люди?

Подумай, как выполняли счет первобытные люди?

Слайд 3Как выполняли счет в Древнем Риме?

Как выполняли счет в Древнем Риме?

Слайд 4Как выполняют счет в современном мире?

Как выполняют счет в современном мире?

Слайд 5Сравни. Вспомни термин, обозначающий способы записи чисел.

Сравни. Вспомни термин, обозначающий способы записи чисел.

Слайд 6СИСТЕМЫ СЧИСЛЕНИЯ
МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ

СИСТЕМЫ СЧИСЛЕНИЯМАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ

Слайд 7Ключевые слова
система счисления
цифра
алфавит
позиционная система счисления
основание
развёрнутая форма записи числа
свёрнутая форма записи

числа
двоичная система счисления
восьмеричная система счисления
шестнадцатеричная система счисления

Ключевые словасистема счисленияцифраалфавитпозиционная система счисленияоснованиеразвёрнутая форма записи числасвёрнутая форма записи числадвоичная система счислениявосьмеричная система счисленияшестнадцатеричная система счисления

Слайд 8Система счисления - это знаковая система, в которой приняты определённые

правила записи чисел.
Цифры - знаки, при помощи которых записываются

числа.
Алфавит системы счисления - совокупность цифр.

Общие сведения

Древнеславянская система счисления

Вавилонская система счисления

Египетская система счисления

Система счисления - это знаковая система, в которой приняты определённые правила записи чисел. Цифры - знаки, при

Слайд 9Узловые числа обозначаются цифрами.
Узловые и алгоритмические числа
Алгоритмические числа получаются в

результате каких-либо операций из узловых чисел.
 100 +
 10

+

=

Узловые числа обозначаются цифрами.Узловые и алгоритмические числаАлгоритмические числа получаются в результате каких-либо операций из узловых чисел. 100

Слайд 10Простейшая и самая древняя система - унарная система счисления. В

ней для записи любых чисел используется всего один символ -

палочка, узелок, зарубка, камушек.

Унарная система счисления

Узелковое письмо «кипу»

Зарубки

Примеры узлов «кипу»

Узелки, дощечки

Камушки

Простейшая и самая древняя система - унарная система счисления. В ней для записи любых чисел используется всего

Слайд 11Римская система счисления
40
=
X
L
1935
M
C
M
X
X
X
28
X
X
V
I
I
I
V
Непозиционная система счисления
Система счисления называется непозиционной, если количественный

эквивалент (количественное значение) цифры в числе не зависит от её

положения в записи числа.

Здесь алгоритмические числа получаются путём сложения и вычитания узловых чисел с учётом следующего правила:
каждый меньший знак, поставленный справа от большего, прибавляется к его значению, а каждый меньший знак, поставленный слева от большего, вычитается из него.

Римская система счисления40=XL1935MCMXXX28XXVIIIVНепозиционная система счисленияСистема счисления называется непозиционной, если количественный эквивалент (количественное значение) цифры в числе не

Слайд 12Система счисления называется позиционной, если количественный эквивалент цифры в числе

зависит от её положения в записи числа.
Основание позиционной системы счисления

равно количеству цифр, составляющих её алфавит.

Алфавит десятичной системы составляют цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Позиционная система счисления

Система счисления называется позиционной, если количественный эквивалент цифры в числе зависит от её положения в записи числа.Основание

Слайд 13Цифры 1234567890 сложились в Индии около 400 г. н. э.
Арабы

стали пользоваться подобной нумерацией около 800 г. н. э.
Примерно в

1200 г. н. э. эту нумерацию начали применять в Европе.

Десятичная система счисления

Цифры 1234567890 сложились в Индии около 400 г. н. э.Арабы стали пользоваться подобной нумерацией около 800 г.

Слайд 14Учимся создавать опорный конспект:
С. 6-7
0,5 балла

Учимся создавать опорный конспект:С. 6-70,5 балла

Слайд 15В позиционной системе счисления с основанием q любое число может

быть представлено в виде:
Aq =±(an–1qn–1+ an–2  qn–2+…+ a0 

q0+ a–1q–1+…+ a–m q–m)
Здесь:
А — число;
q — основание системы счисления;
ai — цифры, принадлежащие алфавиту данной системы счисления;
n — количество целых разрядов числа;
m — количество дробных разрядов числа;
qi — «вес» i-го разряда.
Такая запись числа называется развёрнутой формой записи.

Основная формула

473, 5810 = 4 * 100 + 7 * 10 + 3 * 1 =
4 * 102 + 7 * 101 + 3 * 100+5*10-1 + 8*10-2

В позиционной системе счисления с основанием q любое число может быть представлено в виде:Aq =±(an–1qn–1+ an–2 

Слайд 16Aq =±(an–1  qn–1+ an–2  qn–2+…+ a0  q0+

a–1  q–1+…+ a–m  q–m)

Примеры записи чисел в

развёрнутой форме:

201210=2103 +0102 +1101 +2100

0,12510=110-1 +210-2 +510–3

14351,110=1104 +4103 +3102 +5101 +1100 +110–1

Развёрнутая форма

Aq =±(an–1  qn–1+ an–2  qn–2+…+ a0  q0+ a–1  q–1+…+ a–m  q–m) Примеры

Слайд 17Задание Запишите числа в развернутой форме


Развёрнутая форма
12,3510
537,9410
=1 * 101

+ 2 * 100 + 3*10-1 + 5*10-2
=5 * 102

+ 3 * 101 + 7*100 +9*10-1 + 4*10-2

по 0,5 балла

Задание Запишите числа в развернутой формеРазвёрнутая форма12,3510537,9410 =1 * 101 + 2 * 100 + 3*10-1 +

Слайд 18Учебник Выучить § 1.1.1
Рабочая тетрадь
Выполнить письменно № 16,17,18, 28

Домашнее задание

Учебник		Выучить § 1.1.1Рабочая тетрадь Выполнить письменно № 16,17,18, 28Домашнее задание

Слайд 19Двоичная система счисления
Двоичной системой счисления называется позиционная система счисления с

основанием 2.
Двоичный алфавит: 0 и 1.
Для целых двоичных чисел можно

записать:
an–1an–2…a1a0 = an–12n–1 + an–22n–2 +…+ a020
Например:

100112 =124+023+022+121+120 = 24 +21 + 20 =1910



Правило перевода двоичных чисел в десятичную систему счисления:

Вычислить сумму степеней двойки, соответствующих единицам в свёрнутой форме записи двоичного числа

Двоичная система счисленияДвоичной системой счисления называется позиционная система счисления с основанием 2.Двоичный алфавит: 0 и 1.Для целых

Слайд 20Задание Запишите числа в развернутой форме


Развёрнутая форма
111112
10102
7025,38
=1*24 + 1*23

+ 1*22 + 1*21 + 1*20
=1*23 + 0*22 + 1*21

+ 0*20

=7*83 + 0*82 + 2*81 + 5*80 + 3*10-1

По 0,5 балла

Задание Запишите числа в развернутой формеРазвёрнутая форма111112101027025,38 =1*24 + 1*23 + 1*22 + 1*21 + 1*20=1*23 +

Слайд 2110  2
19
1
1910 = 100112
2  10
1012
2 1

0
разряды
= 1·22 + 0·21 + 1·20
= 4 + 0 +

1 = 510

Правило перевода целых десятичных чисел в двоичную систему счисления

10  21911910 = 1001122  10  10122 1 0разряды= 1·22 + 0·21 + 1·20= 4

Слайд 22Выполните перевод чисел в 2 с/с
36310
31410
по 1 баллу

Выполните перевод чисел в 2 с/с3631031410по 1 баллу

Слайд 2336310 = 1011010112
31410 = 1001110102
Компактное оформление

36310 = 101101011231410 = 1001110102Компактное оформление

Слайд 24an–1an–2…a1a0 = an–18n–1+an–28n–2+…+a080
Пример: 10638 =183 +082+681+380=56310.
Для перевода целого восьмеричного числа

в десятичную систему счисления следует перейти к его развёрнутой записи

и вычислить значение получившегося выражения.

Восьмеричная система счисления

Для перевода целого десятичного числа в восьмеричную систему счисления следует последовательно выполнять деление данного числа и получаемых целых частных на 8 до тех пор, пока не получим частное, равное нулю.

Восьмеричной системой счисления называется позиционная система счисления с основанием 8.
Алфавит: 0, 1, 2, 3, 4, 5, 6, 7.

an–1an–2…a1a0 = an–18n–1+an–28n–2+…+a080Пример: 10638 =183 +082+681+380=56310.Для перевода целого восьмеричного числа в десятичную систему счисления следует перейти к

Слайд 25Основание: q = 16.
Алфавит: 0, 1, 2, 3, 4, 5,

6, 7, 8, 9, A, B, C, D, E, F.
Шестнадцатеричная

система счисления

Переведём десятичное число 154 в шестнадцатеричную систему счисления:

15410 = 9А16

154

16

9

-144

10

(А)

9

16

0

3АF16 =3162+10161+15160 =768+160+15=94310.

Основание: q = 16.Алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C,

Слайд 261) последовательно выполнять деление данного числа и получаемых целых частных

на основание новой системы счисления до тех пор, пока не

получим частное, равное нулю;
2) полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;
3) составить число в новой системе счисления, записывая его, начиная с последнего полученного остатка.

Цифровые весы

Правило перевода целых десятичных чисел в систему счисления с основанием q

1) последовательно выполнять деление данного числа и получаемых целых частных на основание новой системы счисления до тех

Слайд 27Таблица соответствия 10-х, 2-х, 8-х и 16-х чисел от 1

до 16

Таблица соответствия 10-х, 2-х, 8-х и 16-х чисел от 1 до 16

Слайд 28Двоичная арифметика
Арифметика двоичной системы счисления основывается на использовании следующих таблиц

сложения и умножения:
Арифметика одноразрядных двоичных чисел
Арифметика многоразрядных двоичных чисел
Умножение и

деление двоичных чисел
Двоичная арифметикаАрифметика двоичной системы счисления основывается на использовании следующих таблиц сложения и умножения:Арифметика одноразрядных двоичных чиселАрифметика многоразрядных

Слайд 29«Компьютерные» системы счисления
Двоичная система используется в компьютерной технике, так как:
двоичные

числа представляются в компьютере с помощью простых технических элементов с

двумя устойчивыми состояниями;
представление информации посредством только двух состояний надёжно и помехоустойчиво;
двоичная арифметика наиболее проста;
существует математический аппарат, обеспечивающий логические преобразования двоичных данных.

Двоичный код удобен для компьютера.
Человеку неудобно пользоваться длинными и однородными кодами. Специалисты заменяют двоичные коды на величины в восьмеричной или шестнадцатеричной системах счисления.

«Компьютерные» системы счисленияДвоичная система используется в компьютерной технике, так как:двоичные числа представляются в компьютере с помощью простых

Слайд 30Система счисления — это знаковая система, в которой приняты определённые

правила записи чисел.
Система счисления называется позиционной, если количественный эквивалент

цифры в числе зависит от её положения в записи числа.
В позиционной системе счисления с основанием q любое число может быть представлено в виде:
Aq =±(an–1qn–1 + an–2qn–2 +…+ a0q0 + a–1q–1 +…+ a–mq–m)
Здесь:
А — число;
q — основание системы счисления;
ai — цифры, принадлежащие алфавиту данной системы счисления;
n — количество целых разрядов числа;
m — количество дробных разрядов числа;
qi — «вес» i-го разряда.

Самое главное

Система счисления — это знаковая система, в которой приняты определённые правила записи чисел. Система счисления называется позиционной,

Слайд 31Вопросы и задания
Чем различаются унарные, позиционные и непозиционные системы счисления?

Цифры каких систем счисления приведены на рисунке?
Объясните, почему позиционные

системы счисления с основаниями 5, 10, 12 и 20 называют системами счисления анатомического происхождения.

Как от свёрнутой формы записи десятичного числа перейти к его развёрнутой форме?

Запишите в развёрнутом виде числа:
а) 143,51110
б) 1435118
в) 14351116
г) 1435,118

Запишите десятичные эквиваленты следующих чисел:
а) 1728
б) 2ЕА16
в) 1010102
г) 10,12
д) 2436

Укажите, какое из чисел 1100112, 1114,358 и1В16 является:
а) наибольшим
б) наименьшим

Какое минимальное основание имеет система счисления, если в ней записаны числа 123, 222, 111, 241? Определите десятичный эквивалент данных чисел в найденной системе счисления.

Верны ли следующие равенства?
а) 334 =217
б) 338 =214

Найдите основание х системы счисления, если:
а) 14x=910
б) 2002x=13010

Переведите целые числа из десятичной системы счисления в двоичную:
а) 89
б) 600
в) 2010

Переведите целые числа из десятичной системы счисления в восьмеричную:
а) 513
б) 600
в) 2010

Переведите целые числа из десятичной системы счисления в шестнадцатеричную:
а) 513
б) 600
в) 2010

Заполните таблицу, в каждой строке которой одно и то же число должно быть записано в системах счисления с основаниями 2, 8, 10 и 16.

Выполните операцию сложения над двоичными числами:
а) 101010 + 1101
б) 1010 + 1010
в) 10101 + 111

Выполните операцию умножения над двоичными числами:
а) 1010 · 11
б) 111 · 101
в) 1010 · 111

Расставьте знаки арифметических операций так, чтобы были верны следующие равенства в двоичной системе:
а) 1100 ? 11 ? 100 = 100000;
б) 1100 ? 10 ? 10 = 100;
в) 1100 ? 11 ? 100 = 0.

Вычислите выражения:
а) (11111012 +AF16):368
б) 1258 + 1012 ·2A16 – 1418
Ответ дайте в десятичной системе счисления.

Задачник «Системы счисления»

Вопросы и заданияЧем различаются унарные, позиционные и непозиционные системы счисления? Цифры каких систем счисления приведены на рисунке?

Слайд 32Опорный конспект
Непозиционная
В позиционной системе счисления с основанием q любое число

может быть представлено в виде:
Aq =±(an–1 qn–1 + an–2 

qn–2 +…+ a0  q0 + a–1  q–1 +…+ a–m  q–m).

Система счисления — это знаковая система, в которой приняты определённые правила записи чисел.
Цифры - знаки, при помощи которых записываются числа.
Алфавит - совокупность цифр системы счисления.

Система счисления

Двоичная

Десятичная

Восьмеричная

Шестнадцатеричная

Римская

Позиционная

Опорный конспектНепозиционнаяВ позиционной системе счисления с основанием q любое число может быть представлено в виде:Aq =±(an–1 qn–1

Слайд 34Учебник Выучить § 1.1.
Рабочая тетрадь
Выполнить письменно № 16,17,18, 28

Домашнее задание
https://vk.com/public128277160
Группа

ДМПЛ №1 Информатика 8 класс

Учебник		Выучить § 1.1.Рабочая тетрадь Выполнить письменно № 16,17,18, 28Домашнее заданиеhttps://vk.com/public128277160Группа ДМПЛ №1 Информатика 8 класс

Слайд 35Электронные образовательные ресурсы
http://school-collection.edu.ru/catalog/res/caeea6cc-bd1d-4f47-9046-1434ac57e111/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 – Умножение и деление двоичных чисел
http://school-collection.edu.ru/catalog/res/402b749c-240b-4e16-9e4d-bea3fc4fa8fa/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 –

История развития систем счисления
http://school-collection.edu.ru/catalog/res/1a264912-eca9-4b45-8d77-c3655b199113/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 – Перевод недесятичных чисел в десятичную

систему счисления
http://school-collection.edu.ru/catalog/res/78ba290c-0f7c-4067-aaf4-d72f40f49f3b/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 - Перевод десятичных чисел в другие системы счисления
http://school-collection.edu.ru/catalog/res/67cbf74b-f85a-4e9d-88c5-58f203fb90ce/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 - Сложение и вычитание многоразрядных двоичных чисел
http://school-collection.edu.ru/catalog/res/8bb7eefa-4ed9-43fe-aebe-4d6ac67bc6ec/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 - Сложение и вычитание одноразрядных двоичных чисел
http://school-collection.edu.ru/catalog/res/fc77f535-0c00-4871-b67c-fa2ecf567d46/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 – Задачник
http://school-collection.edu.ru/catalog/res/a96df437-5ae3-4cab-8c5f-8d4cd78c5775/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 - Развернутая форма записи числа
http://school-collection.edu.ru/catalog/res/19d0fb95-871d-4063-961d-e7dc5725e555/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 – Тренировочный тест
Электронные образовательные ресурсыhttp://school-collection.edu.ru/catalog/res/caeea6cc-bd1d-4f47-9046-1434ac57e111/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 – Умножение и деление двоичных чиселhttp://school-collection.edu.ru/catalog/res/402b749c-240b-4e16-9e4d-bea3fc4fa8fa/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 – История развития систем счисленияhttp://school-collection.edu.ru/catalog/res/1a264912-eca9-4b45-8d77-c3655b199113/?from=a30a9550-6a62-11da-8cd6-0800200c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62-11da-8cd6-0800200c9a66 – Перевод недесятичных

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика