Разделы презентаций


Обзор конференций Artificial general intelligence, AGI Safety & Impacts AGI’12

Содержание

Artificial General IntelligenceAGI Sessions Cognitive Architectures & Models A, B, C Universal Intelligence and its Formal Approximations Mathematical Formalisms and Tools Conceptual and Contextual Issues Special Session on AGI & Neuroscience

Слайды и текст этой презентации

Слайд 1Обзор конференций
Artificial general intelligence, AGI Safety & Impacts
AGI’12 @ Oxford

А.С.

Потапов

Обзор конференцийArtificial general intelligence, AGI Safety & ImpactsAGI’12 @ OxfordА.С. Потапов

Слайд 2Artificial General Intelligence
AGI Sessions
Cognitive Architectures & Models A, B,

C
Universal Intelligence and its Formal Approximations
Mathematical Formalisms and

Tools
Conceptual and Contextual Issues
Special Session on AGI & Neuroscience
Artificial General IntelligenceAGI Sessions Cognitive Architectures & Models A, B, C Universal Intelligence and its Formal Approximations

Слайд 3Artificial General Intelligence
Keynotes
Margaret Boden (University of Sussex) Creativity and AGI
Angelo

Cangelosi (University of Plymouth) From Sensorimotor Intelligence to Symbols: Developmental Robotics

Experiments
David Hanson (Hanson Robotics) Open source genius machines who care: Growing Friendly AGI via GENI, Glue and Lovable Characters
Nick Bostrom (Future of Humanity Institute) The Superintelligence Control Problem
Artificial General IntelligenceKeynotes Margaret Boden (University of Sussex) Creativity and AGI Angelo Cangelosi (University of Plymouth) From Sensorimotor Intelligence to

Слайд 4From Sensorimotor Intelligence to Symbols: Developmental Robotics Experiments

From Sensorimotor Intelligence to Symbols: Developmental Robotics Experiments

Слайд 8Open source genius machines who care: Growing Friendly AGI via GENI, Glue and

Lovable Characters

Open source genius machines who care: Growing Friendly AGI via GENI, Glue and Lovable Characters

Слайд 10Когнитивные архитектуры
Доклады
Joscha Bach. The Next Generation of the MicroPsi

Framework
Pei Wang. Motivation Management in AGI Systems
Helgi Helgason,

Eric Nivel and Thórisson Kristinn. On Attention Mechanisms for AGI Architectures: A Design Proposal
Alessandro Oltramari and Christian Lebiere. Pursuing Artificial General Intelligence By Leveraging the Knowledge Capabilities Of ACT-R
Peter Lane and Fernand Gobet. CHREST models of implicit learning and board game interpretation
Когнитивные архитектурыДоклады Joscha Bach. The Next Generation of the MicroPsi Framework Pei Wang. Motivation Management in AGI

Слайд 11Когнитивные архитектуры: MicroPsi

Когнитивные архитектуры: MicroPsi

Слайд 14Когнитивные архитектуры
Доклады
Ben Goertzel. Perception Processing for General Intelligence: Bridging

the Symbolic/Subsymbolic Gap
Jade O’Neill and Ben Goertzel. Pattern Mining

for General Intelligence: The FISHGRAM Algorithm for Frequent and Interesting Subhypergraph Mining
Ruiting Lian and Ben Goertzel. Syntax-Semantic Mapping for General Intelligence: Language Comprehension as Hypergraph Homomorphism, Language Generation as Constraint Satisfaction
Paul Rosenbloom. Deconstructing Reinforcement Learning in Sigma
Paul Rosenbloom. Extending Mental Imagery in Sigma
Когнитивные архитектурыДоклады Ben Goertzel. Perception Processing for General Intelligence: Bridging the Symbolic/Subsymbolic Gap Jade O’Neill and Ben

Слайд 15Когнитивные архитектуры: OpenCog

Когнитивные архитектуры: OpenCog

Слайд 18Универсальный интеллект
Доклады
Joel Veness, Peter Sunehag and Marcus Hutter. On

Ensemble Techniques for AIXI Approximation
Peter Sunehag and Marcus Hutter.

OPTIMISTIC AIXI
Laurent Orseau, Mark Ring. Memory issues of intelligent agents
Laurent Orseau, Mark Ring. Space-Time Embedded Intelligence
Alexey Potapov, Andrew Svitenkov and Yurii Vinogradov. Differences between Kolmogorov Complexity and Solomonoff Probability: Consequences for AGI
Alexey Potapov and Sergey Rodionov. Extending Universal Intelligence Models with a Formal Notion of Representation
Универсальный интеллектДоклады Joel Veness, Peter Sunehag and Marcus Hutter. On Ensemble Techniques for AIXI Approximation Peter Sunehag

Слайд 25 Boxing methods
– Physical containment
– Information containment
Incentive methods
– Social integration
– Reward

button
Stunting
Tripwires
Capability control

Boxing methods– Physical containment– Information containment Incentive methods– Social integration– Reward button Stunting TripwiresCapability control

Слайд 36Whole Brain Emulation

Whole Brain Emulation

Слайд 51Выводы?

Выводы?

Слайд 52

Спасибо за внимание

Спасибо за внимание

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика