Пример 2. Докажите, что число 26992 – составное.
Решение. А что тут думать: крайняя справа – цифра «2», число - чётное. Значит, в любом случае кроме 1 и самого числа 26992 есть делитель «2». Следовательно, число – составное.
Пример 3. Докажите, что число 343001 – составное.
Данное число нечётное, не делится на 2. Также не делится на 3 и на 5. Признак делимости на 7 к многозначному числу применять не удобно. Применим хитрость и проверим по признаку делимости на 7 число 343. «оторвём» крайнюю справа цифру и, удвоив её, вычтем из 34:
34 - 2·3=28 – делится на 7, значит, и 343 делится на 7.
343:7=49= 72 →343= 73
Подгоним к формуле «сумма кубов»: a3 + b3 = (a + b) (a2 - ab + b2)
343001=343000+1= 343·1000 + 12 =a3 + b3 = 73 · 103 + 13 = (7·10)3 + 13 = 703 + 13 =(70 + 1) (702 - 70·1 + 12)
Дальше можно не вычислять: мы убедились, что у числа 343001 есть делители, кроме 1 и самого числа 343001. Например, это 71.
https://www.yaklass.ru/p/algebra/9-klass/neravenstva-i-sistemy-neravenstv-9125/mnozhestva-i-operatcii-nad-nimi-12443/re-65db9533-df63-4ae1-91ab-823ddd31f586
- теория: пересечение и объединение множеств, Якласс.
Рассмотрим числа:
16 800=25 ·3·52 ·7=2·2·2·2·2·3·5·5 и 107 163= 23 ·34·72 =2·2·2·3·3·3·3·7·7
Требуется найти НОД(16 800; 107 163).
Рассмотрим множества простых делителей числа 16800, это А, и множество делителей второго числа, это В.
Для наглядности, равные делители выделены разным цветом. Найдём пересечение (символ: ∩) множеств, т.е. множество А ∩ В, содержащее общие элементы множеств простых делителей:
Следовательно, НОД(16 800; 107 163)=2·2·2·3=24.
Следовательно,
НОК(16 800; 107 163)=2·2·2·2·2·3·3·3·3·5·5·7·7=10 716 300.
Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть