Слайд 1От спин-меченых конденсированных полиароматических соединений к магнитно-активным графеновым наноструктурам
Е.В. Третьяков
Цикл
лекций ведущих ученых СО РАН для аспирантов кафедры химической и
биологической физики ФФ НГУ в весеннем семестре 2020 года
Слайд 2• “Spin Units” have:
(a) direct overlap =
Covalent bonding (antiferromagnetic coupling)
—COUPLER—
?
High-spin molecules (or clusters)
Слайд 3S=1
S=0
2J = +5250 cm-1
S=0
S=1
2J = –70 cm-1
Слайд 4Magnetochemistry 2016, 2, 42; doi:10.3390/magnetochemistry2040042
Stable Organic Radicals
Слайд 5Electronic structure of nitronyl nitroxide
0.27
–0.121
Spin density
J. Am. Chem. Soc., 116,
2019 (1994)
Слайд 6Approaches to Nitronyl Nitroxides
Aust. J. Chem., 2017, 70, 1317–1320.
Слайд 7C(sp2)-centered Electrophiles
Different type of products detected
– LiH, Oxidative way
– LiOH,
Eliminative way
Transformation of Electrophile
J. Org. Chem. 74, 2870 (2009).
Слайд 8J. Am. Chem. Soc. 2010, 132, 15908
Stable Triplet Diradical
Слайд 9Stable Triplet Diradical
2J = +540 cm-1
S=1
S=0
S = 1
Слайд 10J. Am. Chem. Soc. 2010, 132, 15908
2J = +740 K
S=1
S=0
Triplet occupancies are nearly 100% at RT!
Stable up to
130 oC
Easily sublimed (∼70 °C/20 mmHg)
1 = 65.4o
Слайд 11In solid argon
15 K
15 K after annealing
at 28 K
D =
0.0248 cm-1
E = 0.0025 cm-1
Ar/DR 103
J. Phys.
Chem. A 2013, 117, 8065
Слайд 12Quantum chemistry 1 = 66o 1 = 16.5o
Stability of Conformations
The
pseudo-eclipsed (PM, MP) conformation is 1.0 kcal/mol more stable
Crystallography 1
= 65.4o and 1 = 13.9o
D = -0.030 cm-1
E/D = 0.11
Rigid Diradical
J. Phys. Chem. A 2013, 117, 8065
Слайд 13Covalent bonding: Metal Complexes
J/kB = -217 K
S = 5/2
S =
1
Inorg. Chem. 2014, 53, 802−809.
1 = 29o
1 = 65.4o
Слайд 14H-Bonded Assembly of Nitronyl Nitroxides
V. Romanov, I. Bagryanskaya, N. Gritsan,
D. Gorbunov, Yu. Vlasenko, M. Yusubov, E. Zaytseva, D. Luneau,
E. Tretyakov. Crystals 2019, 9, 219; doi:10.3390/cryst9040219
Слайд 160.27
–0.121
Spin density
J. Am. Chem. Soc., 116, 2019 (1994)
Ferromagnet chain
Слайд 17Spin-related Applications
Analog Electronics and Spintronics
C.E. Banks et al., Materials Today,
17, 2014, 426
100 × 100 nm
Слайд 18Graphene nanostructures
Spin-related Applications
Shiyong Wang et al., Nature Communications | 7:11507
| DOI: 10.1038/ncomms11507
Слайд 19ZGNR with atomically precise CH edges
Magnetic Properties of Graphene Nanostructures
Pascal
Ruffieux et al., Nature, 10.1038/nature17151
Differential-conductance maps of filled
edge states taken
at -0.3 V
Слайд 20Possible Applications in Spintronics
Electric-field-induced half-metallicity
Son et al., Nature, 2006, 444,
347
3.0/w Volts, where w - the ribbon width in Å
Efficient
electrical control of spin transport
Magnetoresistive device &
Electrically detection of the spin states
Kim et al., Nature Nanotechnol. 3, 408;
M. Slota et al., Natute, 2018, 557, 691
Слайд 21Synthetic Graphene
Chemical vapour deposition (CVD)
Toshiaki Enoki, Phys. Scr. T146 (2012)
014008
Kobayashi Y, Fukui K, Enoki T, Kusakabe K. 2006 Phys.
Rev. B 73 125415
Absence of required atomic control of the edges
Graphene terminations are chemically unstable
Слайд 22Applicable Graphene Materials
Regular shape
Controlled azimuthal orientation
Magnetically precise edges
Defectless or defect-induced
properties
Graphite exfoliation is not considered as the source of graphene
for technological applications
Only bottom-up directed syntheses on surface or in solution provide engineering of GMs
Слайд 23P. Ruffieux et al., 10.1038/nature17151
On Surface Syntheses of Graphene Materials
Слайд 24C. Moreno et al., Science 360, 199 (2018)
On-surface synthesis of
Graphene Materials
Substitution of the edges with functional groups is challenging
via surface-assisted synthesis
Слайд 25K. Müllen and A. Narita et al., JACS, 2018, DOI:
10.1021/jacs.8b02209
Solution-mediated Synthesis of Graphene Nanostructures
up to ~ 60 nm in
length
250-260 oC
Слайд 26Nanoscale 7,12807–12811 (2015)
Separate 500 nm Graphene Nanoribbon
Слайд 27Graphene zig-zag edges are very sensitive due to radicaloid character
Attempts
of solution-mediated synthesis of zig-zag nano-ribbons failed
Not-stable zig-zag GNR
Слайд 28Graphene zig-zag edges are very sensitive due to radicaloid character
Attempts
of solution-mediated synthesis of zig-zag nano-ribbons failed
Not-stable zig-zag GNR
Stable Nitroxides
K.
Okada, et al,. Chem. Lett. 2014, 43, 678.
M. Haraguchi, et al. Chem. Asian J., 2017, 12, 2929
E. Tretyakov, et al., ChemistryOpen, 2017, 6, 642
Слайд 29Graphene zig-zag edges are very sensitive due to radicaloid character
Attempts
of solution-mediated synthesis of zig-zag nano-ribbons failed
Problem
Solution
Injecting a spin density
into the stable molecular GNRs, using nitroxide radicals as spin-sources
M. Slota et al., Nature, 2018, 557, 691-695.
Слайд 30M. Slota et al., Nature, 2018, 557, 691-695.
Nadezhda Troshkova
Yurii Ten
Слайд 31MALDI-TOF MS spectra of low molecular weight polymer fraction
Mw of
126–283 kg/mol, Mn of 57–102 kg/mol, PDI of 2.2–2.7 based
on the SEC analysis with PPP and PS standards
AB-type Diels-Alder polymerization
Pale yellow solid;
It was dissolved in THF and precipitated with MeOH (3 times)
isomeric mixture
Слайд 32M. Slota et al., Nature, 2018, 557, 691-695.
Raman Spectrum
FT-IR spectrum
Dark
purple powder
XPS, Br/C atomic composition ratio (%):
found 1.9±0.2; calcd
2.4
UV-Vis (NMP), λmax:
557 nm
opla bands
Слайд 33M. Slota et al., Nature, 2018, 557, 691-695.
Слайд 35NIT-polyphenylene
Mw = 161 kg mol–1, Mn = 56 kg mol–1,
and PDI = 2.9 based on SEC analysis against PPP
standards
NIT-GNR
100 nm average length
NIT-polyphenylene
NIT-GNR
M. Slota et al., Nature, 2018, 557, 691-695.
Слайд 36J1= –25±5 MHz, J2= 12±3 MHz
M. Slota et al., Nature,
2018, 557, 691-695.
Слайд 37Exchange Interactions in NIT-GNR
Experiment:
J12= −8.3∙10–4 cm–1
J13= 4.0∙10–4 cm–1
The degrees of
spin labeling of NIT-GNR is near 1.3%.
V. Morozov, E. Tretyakov.
J. Mol. Model., 2019, 25, 58.
D. Stass, E. Tretyakov. Magnetochemistry, 2019, 5(2), 32.
Слайд 38Quantum spin coherence
85 K
Lapo Bogani
Слайд 39Coupling between localized spins and
the edge state
M. Slota et al.,
Nature, 2018, 557, 691-695.
Background-corrected time-domain DEER spectra for
NIT-polyphenylene (green) and
NIT-GNR
(red)
Слайд 40Coupling between localized spins and
the edge state
M. Slota et al.,
Nature, 2018, 557, 691-695.
FFT of the DEER signal yields a
radical–edge spin interaction of 1.5 MHz. The edge–radical spin inversion time ~330 ns is considerably shorter than Tm, enabling coherent inversion operations using graphene edge states and localized spins.
Слайд 41The high degree of spin-labeling
High kinetic stability
~4 nm
Слайд 42Syntheses of atomically and magnetically precise graphene nanoribbons
Graphene Boom,
Quo Vadis?
Characterization is challenging
Aggregation-related problems
Mechanical manipulation is a special task
Electrical
contact
Take home message:
Magnetically- and spin-state-responding organic (semi)conductors
Слайд 43J = +370 K
J = 12±3 MHz
Pure organic magnets
Слайд 440.27
–0.121
Spin density
J. Am. Chem. Soc., 116, 2019 (1994)
Metal-radical graphene-like magnets
Слайд 45Finite polynuclear heterospyn systems
D. Luneau "Molecular magnets" Current Opinion
in Solid State & Materials Science 2001, 5, 123-129.
2D Metal-radical
frameworks
Слайд 462D MnII-radical frameworks
Honeycomb-like structure with intercalated anions
K. Fegy,
D. Luneau, E. Belorizky, M. Novac, J.-L. Tholence, C. Paulsen,
T. Ohm, P. Rey Inorg. Chem. 1998, 37, 4524-4532.
Слайд 47Representation of the various investigations on MnII-nitronyl nitroxide systems
Слайд 48Crystals, 2018, 8, 334
Crystals, 2019, 9, 219
Слайд 49{[Mn2(NIT(Me,Me)Im)3ClO4]}n
Unpublished data
Слайд 51Unpublished data
Counter ion effect
Tc = 56 K
Record!
Слайд 52Bottom-up synthesized graphene and graphene-like magnets
Tc = 56 K
Spin-labeled
graphene nano-ribbon
DEER spectrum
Слайд 53Tretyakov Research Group
Functional Organic and Hybrid Materials
2020
Слайд 54Financial support:
Deutscher Akademischer Austauschdienst
The Russian Science Foundation
the Ministry of
Science and Higher Education
(RFMEFI61619X0116)
Max Planck Institute for Polymer
Research
Klaus Müllen
Martin Baumgarten
Akimitsu Narita
Acknowledgments
University of Oxford
Lapo Bogani
Michael Slota
William K. Myers
Lancaster University
Hatef Sadeghi
Colin J. Lambert
Novosibirsk Institute of
Organic Chemistry
Elena Bagryanskaya
Elena Zaytseva
University of Manchester
Ashok Keerthi
Universit´e Claude Bernard Lyon-1
Dominique Luneau