Разделы презентаций


От спин-меченых конденсированных полиароматических соединений к

Содержание

• “Spin Units” have: (a) direct overlap = Covalent bonding (antiferromagnetic coupling)—COUPLER—?High-spin molecules (or clusters)

Слайды и текст этой презентации

Слайд 1От спин-меченых конденсированных полиароматических соединений к магнитно-активным графеновым наноструктурам
Е.В. Третьяков
Цикл

лекций ведущих ученых СО РАН для аспирантов кафедры химической и

биологической физики ФФ НГУ в весеннем семестре 2020 года
От спин-меченых конденсированных полиароматических соединений к магнитно-активным графеновым наноструктурамЕ.В. ТретьяковЦикл лекций ведущих ученых СО РАН для аспирантов

Слайд 2• “Spin Units” have:
(a) direct overlap =

Covalent bonding (antiferromagnetic coupling)
—COUPLER—
?
High-spin molecules (or clusters)

• “Spin Units” have:   (a) direct overlap = Covalent bonding (antiferromagnetic coupling)—COUPLER—?High-spin molecules (or clusters)

Слайд 3S=1
S=0
2J = +5250 cm-1
S=0
S=1
2J = –70 cm-1

S=1S=02J = +5250 cm-1S=0S=12J = –70 cm-1

Слайд 4Magnetochemistry 2016, 2, 42; doi:10.3390/magnetochemistry2040042
Stable Organic Radicals

Magnetochemistry 2016, 2, 42; doi:10.3390/magnetochemistry2040042Stable Organic Radicals

Слайд 5Electronic structure of nitronyl nitroxide
0.27
–0.121
Spin density
J. Am. Chem. Soc., 116,

2019 (1994)

Electronic structure of nitronyl nitroxide0.27–0.121Spin densityJ. Am. Chem. Soc., 116, 2019 (1994)

Слайд 6Approaches to Nitronyl Nitroxides
Aust. J. Chem., 2017, 70, 1317–1320.

Approaches to Nitronyl NitroxidesAust. J. Chem., 2017, 70, 1317–1320.

Слайд 7C(sp2)-centered Electrophiles
Different type of products detected
– LiH, Oxidative way
– LiOH,

Eliminative way
Transformation of Electrophile
J. Org. Chem. 74, 2870 (2009).

C(sp2)-centered ElectrophilesDifferent type of products detected– LiH, Oxidative way– LiOH, Eliminative wayTransformation of ElectrophileJ. Org. Chem. 74,

Слайд 8J. Am. Chem. Soc. 2010, 132, 15908
Stable Triplet Diradical

J. Am. Chem. Soc. 2010, 132, 15908Stable Triplet Diradical

Слайд 9Stable Triplet Diradical
2J = +540 cm-1
S=1
S=0
S = 1

Stable Triplet Diradical2J = +540 cm-1S=1S=0S = 1

Слайд 10J. Am. Chem. Soc. 2010, 132, 15908
2J = +740 K
S=1
S=0

Triplet occupancies are nearly 100% at RT!

Stable up to

130 oC

Easily sublimed (∼70 °C/20 mmHg)

1 = 65.4o

J. Am. Chem. Soc. 2010, 132, 159082J = +740 KS=1S=0 Triplet occupancies are nearly 100% at RT!

Слайд 11In solid argon
15 K
15 K after annealing
at 28 K
D =

0.0248 cm-1
E = 0.0025 cm-1
Ar/DR  103
J. Phys.

Chem. A 2013, 117, 8065
In solid argon15 K15 K after annealingat 28 KD = 0.0248 cm-1 E = 0.0025 cm-1 Ar/DR

Слайд 12Quantum chemistry 1 = 66o 1 = 16.5o
Stability of Conformations
The

pseudo-eclipsed (PM, MP) conformation is 1.0 kcal/mol more stable
Crystallography 1

= 65.4o and 1 = 13.9o

D = -0.030 cm-1
E/D = 0.11

Rigid Diradical

J. Phys. Chem. A 2013, 117, 8065

Quantum chemistry 1 = 66o 1 = 16.5oStability of ConformationsThe pseudo-eclipsed (PM, MP) conformation is 1.0 kcal/mol

Слайд 13Covalent bonding: Metal Complexes
J/kB = -217 K
S = 5/2
S =

1
Inorg. Chem. 2014, 53, 802−809.
1 = 29o
1 = 65.4o

Covalent bonding: Metal ComplexesJ/kB = -217 KS = 5/2S = 1Inorg. Chem. 2014, 53, 802−809.1 = 29o1

Слайд 14H-Bonded Assembly of Nitronyl Nitroxides
V. Romanov, I. Bagryanskaya, N. Gritsan,

D. Gorbunov, Yu. Vlasenko, M. Yusubov, E. Zaytseva, D. Luneau,

E. Tretyakov. Crystals 2019, 9, 219; doi:10.3390/cryst9040219
H-Bonded Assembly of Nitronyl NitroxidesV. Romanov, I. Bagryanskaya, N. Gritsan, D. Gorbunov, Yu. Vlasenko, M. Yusubov, E.

Слайд 160.27
–0.121
Spin density
J. Am. Chem. Soc., 116, 2019 (1994)
Ferromagnet chain

0.27–0.121Spin densityJ. Am. Chem. Soc., 116, 2019 (1994)Ferromagnet chain

Слайд 17Spin-related Applications
Analog Electronics and Spintronics
C.E. Banks et al., Materials Today,

17, 2014, 426
100 × 100 nm

Spin-related ApplicationsAnalog Electronics and SpintronicsC.E. Banks et al., Materials Today, 17, 2014, 426100 × 100 nm

Слайд 18Graphene nanostructures
Spin-related Applications
Shiyong Wang et al., Nature Communications | 7:11507

| DOI: 10.1038/ncomms11507

Graphene nanostructuresSpin-related ApplicationsShiyong Wang et al., Nature Communications | 7:11507 | DOI: 10.1038/ncomms11507

Слайд 19ZGNR with atomically precise CH edges
Magnetic Properties of Graphene Nanostructures
Pascal

Ruffieux et al., Nature, 10.1038/nature17151
Differential-conductance maps of filled edge states taken

at -0.3 V
ZGNR with atomically precise CH edgesMagnetic Properties of Graphene NanostructuresPascal Ruffieux et al., Nature, 10.1038/nature17151Differential-conductance maps of

Слайд 20Possible Applications in Spintronics
Electric-field-induced half-metallicity
Son et al., Nature, 2006, 444,

347
3.0/w Volts, where w - the ribbon width in Å
Efficient

electrical control of spin transport

Magnetoresistive device &

Electrically detection of the spin states

Kim et al., Nature Nanotechnol. 3, 408;
M. Slota et al., Natute, 2018, 557, 691

Possible Applications in SpintronicsElectric-field-induced half-metallicitySon et al., Nature, 2006, 444, 3473.0/w Volts, where w - the ribbon

Слайд 21Synthetic Graphene
Chemical vapour deposition (CVD)
Toshiaki Enoki, Phys. Scr. T146 (2012)

014008
Kobayashi Y, Fukui K, Enoki T, Kusakabe K. 2006 Phys.

Rev. B 73 125415

Absence of required atomic control of the edges
Graphene terminations are chemically unstable

Synthetic GrapheneChemical vapour deposition (CVD)Toshiaki Enoki, Phys. Scr. T146 (2012) 014008Kobayashi Y, Fukui K, Enoki T, Kusakabe

Слайд 22Applicable Graphene Materials
Regular shape
Controlled azimuthal orientation
Magnetically precise edges
Defectless or defect-induced

properties
Graphite exfoliation is not considered as the source of graphene

for technological applications

Only bottom-up directed syntheses on surface or in solution provide engineering of GMs
Applicable Graphene MaterialsRegular shapeControlled azimuthal orientationMagnetically precise edgesDefectless or defect-induced propertiesGraphite exfoliation is not considered as the

Слайд 23P. Ruffieux et al., 10.1038/nature17151
On Surface Syntheses of Graphene Materials

P. Ruffieux et al., 10.1038/nature17151On Surface Syntheses of Graphene Materials

Слайд 24C. Moreno et al., Science 360, 199 (2018)
On-surface synthesis of

Graphene Materials
Substitution of the edges with functional groups is challenging

via surface-assisted synthesis
C. Moreno et al., Science 360, 199 (2018)On-surface synthesis of Graphene MaterialsSubstitution of the edges with functional

Слайд 25K. Müllen and A. Narita et al., JACS, 2018, DOI:

10.1021/jacs.8b02209
Solution-mediated Synthesis of Graphene Nanostructures
up to ~ 60 nm in

length

250-260 oC

K. Müllen and A. Narita et al., JACS, 2018, DOI: 10.1021/jacs.8b02209Solution-mediated Synthesis of Graphene Nanostructuresup to ~

Слайд 26Nanoscale 7,12807–12811 (2015)
Separate 500 nm Graphene Nanoribbon

Nanoscale 7,12807–12811 (2015)Separate 500 nm Graphene Nanoribbon

Слайд 27Graphene zig-zag edges are very sensitive due to radicaloid character
Attempts

of solution-mediated synthesis of zig-zag nano-ribbons failed
Not-stable zig-zag GNR

Graphene zig-zag edges are very sensitive due to radicaloid characterAttempts of solution-mediated synthesis of zig-zag nano-ribbons failedNot-stable

Слайд 28Graphene zig-zag edges are very sensitive due to radicaloid character
Attempts

of solution-mediated synthesis of zig-zag nano-ribbons failed
Not-stable zig-zag GNR
Stable Nitroxides
K.

Okada, et al,. Chem. Lett. 2014, 43, 678.

M. Haraguchi, et al. Chem. Asian J., 2017, 12, 2929
E. Tretyakov, et al., ChemistryOpen, 2017, 6, 642 

Graphene zig-zag edges are very sensitive due to radicaloid characterAttempts of solution-mediated synthesis of zig-zag nano-ribbons failedNot-stable

Слайд 29Graphene zig-zag edges are very sensitive due to radicaloid character
Attempts

of solution-mediated synthesis of zig-zag nano-ribbons failed
Problem
Solution
Injecting a spin density

into the stable molecular GNRs, using nitroxide radicals as spin-sources

M. Slota et al., Nature, 2018, 557, 691-695.

Graphene zig-zag edges are very sensitive due to radicaloid characterAttempts of solution-mediated synthesis of zig-zag nano-ribbons failedProblemSolutionInjecting

Слайд 30M. Slota et al., Nature, 2018, 557, 691-695.
Nadezhda Troshkova
Yurii Ten

M. Slota et al., Nature, 2018, 557, 691-695.Nadezhda TroshkovaYurii Ten

Слайд 31MALDI-TOF MS spectra of low molecular weight polymer fraction
Mw of

126–283 kg/mol, Mn of 57–102 kg/mol, PDI of 2.2–2.7 based

on the SEC analysis with PPP and PS standards

AB-type Diels-Alder polymerization

Pale yellow solid;

It was dissolved in THF and precipitated with MeOH (3 times)

isomeric mixture

MALDI-TOF MS spectra of low molecular weight polymer fractionMw of 126–283 kg/mol, Mn of 57–102 kg/mol, PDI

Слайд 32M. Slota et al., Nature, 2018, 557, 691-695.
Raman Spectrum
FT-IR spectrum
Dark

purple powder
XPS, Br/C atomic composition ratio (%):
found 1.9±0.2; calcd

2.4

UV-Vis (NMP), λmax:
557 nm

opla bands

M. Slota et al., Nature, 2018, 557, 691-695.Raman SpectrumFT-IR spectrumDark purple powder XPS, Br/C atomic composition ratio

Слайд 33M. Slota et al., Nature, 2018, 557, 691-695.

M. Slota et al., Nature, 2018, 557, 691-695.

Слайд 34Spin-density distribution

Spin-density distribution

Слайд 35NIT-polyphenylene
Mw = 161 kg mol–1, Mn = 56 kg mol–1,

and PDI = 2.9 based on SEC analysis against PPP

standards

NIT-GNR
100 nm average length

NIT-polyphenylene

NIT-GNR

M. Slota et al., Nature, 2018, 557, 691-695.

NIT-polyphenyleneMw = 161 kg mol–1, Mn = 56 kg mol–1, and PDI = 2.9 based on SEC

Слайд 36J1= –25±5 MHz, J2= 12±3 MHz
M. Slota et al., Nature,

2018, 557, 691-695.

J1= –25±5 MHz, J2= 12±3 MHzM. Slota et al., Nature, 2018, 557, 691-695.

Слайд 37Exchange Interactions in NIT-GNR
Experiment:
J12= −8.3∙10–4 cm–1
J13= 4.0∙10–4 cm–1
The degrees of

spin labeling of NIT-GNR is near 1.3%.
V. Morozov, E. Tretyakov.

J. Mol. Model., 2019, 25, 58.
D. Stass, E. Tretyakov. Magnetochemistry, 2019, 5(2), 32.
Exchange Interactions in NIT-GNRExperiment:J12= −8.3∙10–4 cm–1J13= 4.0∙10–4 cm–1The degrees of spin labeling of NIT-GNR is near 1.3%.V.

Слайд 38Quantum spin coherence
85 K
Lapo Bogani

Quantum spin coherence85 KLapo Bogani

Слайд 39Coupling between localized spins and the edge state
M. Slota et al.,

Nature, 2018, 557, 691-695.
Background-corrected time-domain DEER spectra for NIT-polyphenylene (green) and
NIT-GNR

(red)
Coupling between localized spins and the edge stateM. Slota et al., Nature, 2018, 557, 691-695.Background-corrected time-domain DEER

Слайд 40Coupling between localized spins and the edge state
M. Slota et al.,

Nature, 2018, 557, 691-695.
FFT of the DEER signal yields a

radical–edge spin interaction of 1.5 MHz. The edge–radical spin inversion time ~330 ns is considerably shorter than Tm, enabling coherent inversion operations using graphene edge states and localized spins.
Coupling between localized spins and the edge stateM. Slota et al., Nature, 2018, 557, 691-695.FFT of the

Слайд 41The high degree of spin-labeling
High kinetic stability
~4 nm

The high degree of spin-labelingHigh kinetic stability~4 nm

Слайд 42Syntheses of atomically and magnetically precise graphene nanoribbons
Graphene Boom,

Quo Vadis?
Characterization is challenging
Aggregation-related problems

Mechanical manipulation is a special task

Electrical

contact

Take home message:
Magnetically- and spin-state-responding organic (semi)conductors

Syntheses of atomically and magnetically precise graphene nanoribbons Graphene Boom, Quo Vadis?Characterization is challengingAggregation-related problemsMechanical manipulation is

Слайд 43J = +370 K
J = 12±3 MHz
Pure organic magnets

J = +370 KJ = 12±3 MHzPure organic magnets

Слайд 440.27
–0.121
Spin density
J. Am. Chem. Soc., 116, 2019 (1994)
Metal-radical graphene-like magnets

0.27–0.121Spin densityJ. Am. Chem. Soc., 116, 2019 (1994)Metal-radical graphene-like magnets

Слайд 45Finite polynuclear heterospyn systems
D. Luneau "Molecular magnets" Current Opinion

in Solid State & Materials Science 2001, 5, 123-129.
2D Metal-radical

frameworks
Finite polynuclear heterospyn systems D. Luneau

Слайд 462D MnII-radical frameworks
Honeycomb-like structure with intercalated anions

K. Fegy,

D. Luneau, E. Belorizky, M. Novac, J.-L. Tholence, C. Paulsen,

T. Ohm, P. Rey Inorg. Chem. 1998, 37, 4524-4532.
2D MnII-radical frameworks Honeycomb-like structure with intercalated anions K. Fegy, D. Luneau, E. Belorizky, M. Novac, J.-L.

Слайд 47Representation of the various investigations on MnII-nitronyl nitroxide systems

Representation of the various investigations on MnII-nitronyl nitroxide systems

Слайд 48Crystals, 2018, 8, 334
Crystals, 2019, 9, 219

Crystals, 2018, 8, 334Crystals, 2019, 9, 219

Слайд 49{[Mn2(NIT(Me,Me)Im)3ClO4]}n
Unpublished data

{[Mn2(NIT(Me,Me)Im)3ClO4]}nUnpublished data

Слайд 50Pressure effect
Unpublished data

Pressure effectUnpublished data

Слайд 51Unpublished data
Counter ion effect
Tc = 56 K
Record!

Unpublished dataCounter ion effectTc = 56 KRecord!

Слайд 52Bottom-up synthesized graphene and graphene-like magnets
Tc = 56 K
Spin-labeled

graphene nano-ribbon
DEER spectrum

Bottom-up synthesized graphene and graphene-like magnets Tc = 56 KSpin-labeled graphene nano-ribbonDEER spectrum

Слайд 53Tretyakov Research Group
Functional Organic and Hybrid Materials
2020

Tretyakov Research GroupFunctional Organic and Hybrid Materials2020

Слайд 54Financial support:
Deutscher Akademischer Austauschdienst
The Russian Science Foundation
the Ministry of

Science and Higher Education
(RFMEFI61619X0116)
Max Planck Institute for Polymer

Research
Klaus Müllen
Martin Baumgarten
Akimitsu Narita

Acknowledgments

University of Oxford
Lapo Bogani
Michael Slota
William K. Myers

Lancaster University
Hatef Sadeghi
Colin J. Lambert

Novosibirsk Institute of
Organic Chemistry
Elena Bagryanskaya
Elena Zaytseva

University of Manchester
Ashok Keerthi

Universit´e Claude Bernard Lyon-1
Dominique Luneau

Financial support:Deutscher Akademischer Austauschdienst The Russian Science Foundationthe Ministry of Science and Higher Education (RFMEFI61619X0116) Max Planck

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика