Разделы презентаций


Solution Methods for Bilevel Optimization

Содержание

OverviewDefinition and general form of a bilevel problemDiscuss optimality (KKT-type) conditionsReformulate general bilevel problem as a system of equationsConsider iterative (descent direction) methods applicable to solve this reformulationLook at the numerical

Слайды и текст этой презентации

Слайд 1Solution Methods for Bilevel Optimization
Andrey Tin
A.Tin@soton.ac.uk
School of Mathematics

Supervisors: Dr Alain

B. Zemkoho, Professor Jörg Fliege


Solution Methods for Bilevel OptimizationAndrey TinA.Tin@soton.ac.ukSchool of MathematicsSupervisors: Dr Alain B. Zemkoho, Professor Jörg Fliege

Слайд 2Overview
Definition and general form of a bilevel problem
Discuss optimality (KKT-type)

conditions
Reformulate general bilevel problem as a system of equations
Consider iterative

(descent direction) methods applicable to solve this reformulation
Look at the numerical results of using Levenberg-Marquardt method
OverviewDefinition and general form of a bilevel problemDiscuss optimality (KKT-type) conditionsReformulate general bilevel problem as a system

Слайд 3Stackelberg Game (Bilevel problem)
Players: the Leader and the Follower
The Leader

is first to make a decision
Follower reacts optimally to Leader’s

decision
The payoff for the Leader depends on the follower’s reaction
Stackelberg Game (Bilevel problem)Players: the Leader and the FollowerThe Leader is first to make a decisionFollower reacts

Слайд 4Example
Taxation of a factory
Leader – government
Objectives: maximize profit and minimize

pollution
Follower – factory owner
Objectives: maximize profit

ExampleTaxation of a factoryLeader – governmentObjectives: maximize profit and minimize pollutionFollower – factory ownerObjectives: maximize profit

Слайд 5General structure of a Bilevel problem
 

General structure of a Bilevel problem 

Слайд 6Important Sets
 

Important Sets 

Слайд 7Solution methods
Vertex enumeration in the context of Simplex method
Kuhn-Tucker approach
Penalty

approach
Extract gradient information from a lower objective function to compute

directional derivatives of an upper objective function







Solution methodsVertex enumeration in the context of Simplex methodKuhn-Tucker approachPenalty approachExtract gradient information from a lower objective

Слайд 8Concept of KKT conditions
 

Concept of KKT conditions 

Слайд 9Value function reformulation
 

Value function reformulation 

Слайд 10KKT for value function reformulation
 

KKT for value function reformulation 

Слайд 11Assumptions

Assumptions

Слайд 12KKT-type optimality conditions for Bilevel

KKT-type optimality conditions for Bilevel

Слайд 13Further Assumptions (for simpler version)

Further Assumptions (for simpler version)

Слайд 14Simpler version
 

Simpler version 

Слайд 15NCP-Functions
Define
Give a reason (non-differentiability of constraints)
Fischer-Burmeister

NCP-FunctionsDefineGive a reason (non-differentiability of constraints)Fischer-Burmeister

Слайд 16Simpler version in the form of the system of equations

Simpler version in the form of the system of equations

Слайд 17Iterative methods
 

Iterative methods 

Слайд 18For Bilevel case
 

For Bilevel case 

Слайд 19Newton method
Define
Explain that we are dealing with non-square system
Suggest pseudo

inverse Newton

Newton methodDefineExplain that we are dealing with non-square systemSuggest pseudo inverse Newton

Слайд 20Pseudo inverse

Pseudo inverse

Слайд 21Newton method with pseudo inverse

Newton method with pseudo inverse

Слайд 22Gauss-Newton method
Define
Mention the wrong formulation
Refer to pseudo-inverse Newton

Gauss-Newton methodDefineMention the wrong formulationRefer to pseudo-inverse Newton

Слайд 23Gauss-Newton method
 

Gauss-Newton method 

Слайд 24Convergence of Newton and Gauss-Newton
Talk about starting point condition
Interest for

future analysis

Convergence of Newton and Gauss-NewtonTalk about starting point conditionInterest for future analysis

Слайд 25Levenberg-Marquardt method

Levenberg-Marquardt method

Слайд 26Numerical results

Numerical results

Слайд 27Plans for further work
 

Plans for further work 

Слайд 28Plans for further work
6. Construct the own code for Levenberg-Marquardt

method in the context of solving bilevel problems within defined

reformulation.
7. Search for good starting point techniques for our problem. 8. Do the numerical calculations for the harder reformulation defined .
9. Code Newton method with pseudo-inverse.
10. Solve the problem assuming strict complementarity
11. Look at other solution methods.
Plans for further work6. Construct the own code for Levenberg-Marquardt method in the context of solving bilevel

Слайд 31References
 

References 

Слайд 32References
 

References 

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика