вершиной в точке О. Введем ось Оx так, как показано
на рисунке 1 (ОМ – ось конуса). Произвольное сечение конуса плоскостью, перпендикулярной к оси Оx, является кругом с центром в точке М1 пересечения этой плоскости с осью Оx. Обозначим радиус этого круга через R1, а площадь сечения через S(x), где x – абсцисса точки М1. из подобия прямоугольных треугольников ОМ1А1 и ОМА следует, чтоОткуда . Так как ,то
Применяя основную формулу для вычисления объемов тел при а = 0,b = n, получаем
Площадь S основания конуса равна πR2, S = πR2 , поэтому
Теорема доказана.