ЧЕБЫШЕВ Пафнутий Львович
Детство, образование
П. Л. Чебышев скончался 8 декабря 1894 года за письменным столом. Погребён в родном имении в селе Спас-Прогнанье, которое находится в 90 км от Москвы.
Чебышев о задачах математики
«Науки математические с самой глубокой древности обращали на себя особенное внимание; в настоящее время они получили еще больше интерес по влиянию своему на искусства и промышленность. Сближение теории с практикой дает самые благоприятные результаты, и не только одна практика от этого выигрывает; сами науки развиваются под влиянием ее: она открывает им новые предметы для исследований или новые стороны в предметах, давно известных. Несмотря на ту высокую степень развития, до которой доведены науки математические трудами великих геометров трех последних столетий, практика обнаруживает ясно неполноту их во многих отношениях; она предлагает вопросы существенно новые для науки и таким образом вызывает на изыскание совершенно новых методов…».
«Из многих предметов исследования, которые представились мне при рассматривании и сличении между собой различных механизмов передачи движения, особенно в паровой машине, где и экономия в топливе, и прочность машины много зависят от способов передачи работы пара, я особенно занялся теориею механизмов, известных под названием параллелограммов. Изыскивая различные средства извлекать из пара наиболее работы в том случае, когда нужно иметь вращательное движение, как это большею частью бывает, Уатт изобрел особенный механизм для превращения прямолинейного движения поршня во вращательное (движение) коромысла — механизм, известный под названием параллелограмм…».
Суждения, которые приводят в доказательство этого начала, очевидно, не могут выдержать никакой критики; даже на практике очень часто оказывается неудобным употреблять элементы параллелограммов, необходимые по этому началу, так что для поправки их понадобились особые таблицы. Из сказанного мною видно, до какой степени необходимо было параллелограмм Уатта и его видоизменения подвергнуть строгому анализу, заменивши вышеупомянутое начало существенными свойствами этого механизма и условиями, которые встречаются на практике.
«По приезде в Лондон я обратился к двум известным английским геометрам Сильвестру и Кэли. Расположению этих ученых я обязан, с одной стороны, интересными беседами по различным отраслям математики, на что употреблял я вечера и воскресные дни, в продолжение которых все фабрики закрыты, а с другой стороны, случаем познакомиться с известным английским инженером-механиком Грегори. Узнавши о цели моего путешествия и, в особенности о тех вопросах практической механики, решение которых составляло предмет моих занятий, он вызвался содействовать мне в отыскании на лондонских фабриках предметов, наиболее для меня необходимых. С этой целью он ездил со мною на различные фабрики, где полагал найти различные машины, устроенные самим Уаттом...
…Эти машины были особенно интересны для меня как данные о правилах, которым следовал Уатт при устройстве своих параллелограммов, правила, с которыми я должен был сравнивать результаты моих изысканий, упомянутых выше. К сожалению, оказалось, что одна из самых старинных машин Уатта, долго сохранявшаяся была, продана в лом; но г-н Грегори успел найти две машины, которые, как видно по патентам, были совсем недавно переделаны Уаттом и сохраняются теперь как достопамятность».
П. Л. Чебышеву принадлежит создание свыше 40 различных механизмов и около 80 их модификаций. В истории развития науки о машинах нельзя указать ни одного учёного, творчеству которого принадлежало бы столь значительное количество оригинальных механизмов. Но П. Л. Чебышев решал не только задачи синтеза механизмов. Он на много лет раньше других учёных выводит знаменитую структурную формулу плоских механизмов, которая только по недоразумению носит название формулы Грюблера - немецкого учёного, открывшего её на 14 лет позднее Чебышева.
Такие многочлены П. Л. Чебышевым были найдены и получили название "полиномов Чебышева". Они обладают многими замечательными свойствами и в настоящее время служат одним из наиболее употребительных орудий исследования во многих вопросах математики, физики и техники.
Работы по теории чисел
Теория чисел или высшая арифметика — раздел математики, изучающий целые числа и сходные объекты. В зависимости от используемых методов теорию чисел подразделяют на несколько подтеорий.
Аналитическая теория чисел
Алгебраическая теория чисел
Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть