Был мудрым Евклид,
Но его параллели,
Как будто бы вечные сваи легли.
И мысли его, что как стрелы летели,
Всегда оставались в пределах Земли.
А там, во вселенной, другие законы,
Там точками служат иные тела.
И там параллельных лучей миллионы
Природа сквозь Марс, может быть, провела.
Цель:
Найти доказательство того, что истинно утверждение «через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и параллельные ей»
ИТОГИ опроса:
всего параллельно нет
300 3% 97%
Ответ: параллельно.
всего спираль окружности
300 100% 0%
Ответ: окружности.
На рисунке изображена спираль или несколько
окружностей?
2
ВЫВОД: В геометрии истинность каждого утверждения необходимо доказывать, нельзя полагаться только на наблюдения.
Положительный момент: благодаря зрительным искажениям существует живопись.
Если интересно
через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её.
ВЫВОД: Геометрия Лобачевского отличается от евклидовой лишь в одной аксиоме — пятой. Но главное различие кроется в понимании самой природы пространства.
Евклидова аксиома
о параллельных:
Аксиома
Лобачевского
о параллельных:
Риманова геометрия, многомерное обобщение геометрии на поверхности, представляющее собой теорию римановых пространств, т. е. таких пространств, где в малых областях приближённо имеет место евклидова геометрия (с точностью до малых высшего порядка сравнительно с размерами области). Риманова геометрия получила своё название по имени Б. Римана, который заложил её основы в 1854.
Web ресурсы
http://www.pereplet.ru/obrazovanie/stsoros/67.html - о неевклидовой геометрии, Э. Б. ВИНБЕРГ, Московский государственный университет им.
М.В. Ломоносова
http://www.hrono.ru/biograf/lobachevski.html - Шикман А.П. Деятели отечественной истории. Биографический справочник. Москва, 1997 г.
http://ns.math.rsu.ru/mexmat/polesno/evklid.ru.html - биография Евклида.
Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть