Разделы презентаций


"Медиана, биссектриса,высота треугольника"

Содержание

Медиана треугольника   —   отрезок, соединяющий вершину   треугольника с серединой противоположной стороны.  AK = KC ,   BK-медиана треугольника ABC , 

Слайды и текст этой презентации

Слайд 1Медиана, биссектриса и высота треугольника. 
7 класс
Иванова Т.В.

Медиана, биссектриса  и высота треугольника.  7 классИванова Т.В.

Слайд 2Медиана треугольника   —  
отрезок, соединяющий вершину   треугольника с серединой противоположной стороны.  
AK

= KC ,   BK-медиана 
треугольника ABC , 

Медиана треугольника   —   отрезок, соединяющий вершину   треугольника с серединой противоположной стороны.  AK = KC ,   BK-медиана треугольника ABC , 

Слайд 3В любом треугольнике можно провести 3 медианы.  
Все они  пересекаются в одной

точке,
в центре (центре тяжести) треугольника.  

В любом треугольнике можно провести 3 медианы.   Все они  пересекаются в одной точке, в центре (центре тяжести) треугольника.  

Слайд 4Биссектриса треугольника   —   отрезок биссектрисы угла треугольника,  соединяющий вершину треугольника с точкой

на противолежащей стороне.  
биссектриса угла   —   это луч, делящий угол   на два равных,

а биссектриса треугольника   —   это отрезок, часть луча,   ограниченная стороной треугольника.    
Биссектриса треугольника   —   отрезок биссектрисы угла треугольника,  соединяющий вершину треугольника с точкой на противолежащей стороне.  биссектриса угла   —  

Слайд 5BK   биссектриса  
треугольника   ABC.

BK   биссектриса  треугольника   ABC.

Слайд 6В каждом треугольнике можно провести   3 биссектрисы, которые пересекаются в одной точке,
Точка пересечения

биссектрис треугольника ( I )   —   центр вписанной в треугольник 
окружности.  

В каждом треугольнике можно провести   3 биссектрисы, которые пересекаются в одной точке,Точка пересечения биссектрис треугольника ( I )   —   центр

Слайд 7Высота треугольника   —   перпендикуляр, проведенный
из вершины  треугольника к прямой, содержащей противоположную

сторону.  

Высота треугольника   —   перпендикуляр, проведенный из вершины  треугольника к прямой, содержащей противоположную сторону.  

Слайд 8Выберите изображение, на котором  
BK  —  биссектриса.  

Выберите изображение, на котором  BK  —  биссектриса.  

Слайд 9Выберите вариант
 BK   —    высота. BK   —  биссектриса.   BK   —

 медиана. 

Выберите вариант  BK   —    высота. BK   —  биссектриса.   BK   —  медиана. 

Слайд 10Выберите изображение, на котором
 BK  —   высота. 

Выберите изображение, на котором  BK  —   высота. 

Слайд 11Выберите вариант 
 BK   —    высота. BK   —  биссектриса.   BK   —  медиана. 

Выберите вариант  BK   —    высота. BK   —  биссектриса.   BK   —  медиана. 

Слайд 12Точка   К   лежит на стороне   АС   треугольника   АВС.     
ВК

  —   медиана и высота данного  треугольника.  
Найдите периметр  треугольника

  АВС,   если  
 ВК   =   4см,  а     периметр треугольника BCK =   10см. 
Точка   К   лежит на стороне   АС   треугольника   АВС.     ВК   —   медиана и высота данного  треугольника.

Слайд 13Точка   М   середина   АС,
 стороны  треугольника АВС и  ВМ   —

 
высота треугольника АВС.     ВК - биссектриса  угла АВМ.    Найдите

угол АВС,   если  угол КВМ  =   17°.
Точка   М   середина   АС,  стороны  треугольника АВС и  ВМ   —   высота треугольника АВС.     ВК -

Слайд 14 Школьный помощник - учебники онлайн, правила, задачи, примеры

Школьный помощник - учебники онлайн, правила, задачи, примеры

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика