Слайд 1Учитель математики ГОУ ШНО №381 г.Москва Челышева Е.С.
ПРОПОРЦИЯ
Слайд 2ПРОПОРЦИЯ
Ничто не нравится, кроме красоты,
в красоте –
ничто, кроме форм,
в формах – ничто, кроме пропорций,
в
пропорциях – ничто, кроме числа.
(Аврелий Августин)
354-430г.г.
Слайд 3 Из истории изучения пропорции
Слово «пропорция»
ввел в
употребление Цицерон в 1 веке до н.э., который буквально означал
аналогия, соотношение.
Слайд 4Начало изучения пропорции
Пропорции начали изучать еще в древности.
В
4 веке до н.э. древнегреческий математик Евдокс
дал определение пропорции,
составленной из величин любой природы.
Слайд 5ПРОПОРЦИЯ
определение
Пропорция - равенство между отношениями
четырёх величин
А, В, С, D:
A : B = C : D,
где A и D – это крайние члены пропорции,
а B и C – средние члены пропорции
Слайд 6Основное свойство пропорции
Произведение средних членов пропорции равно произведению крайних.
A • D = B • C
2 :
5 = 4 : 10
2 •10 = 5 • 4
20 = 20
Слайд 7Как найти неизвестный член пропорции
Решить уравнение
Х
: 5= 4 :1 0
Х =
5 • 4 : 10
Х = 2
Ответ: 2
Слайд 8
Прямая пропорциональность Пример решения задачи с помощью пропорции
Задача. Из 21 кг хлопкового
семени получили 5,1 кг масла. Сколько масла получится из 7 кг хлопкового семени?
Решение
Массы семени и масла находятся в прямой пропорциональной зависимости, значит можно составить пропорцию:
21 : 7 = 5,1 : Х
Х = 7 • 5,1 : 21
Х = 1,7
Ответ: Из 7 кг хлопкового семени получится 1,7 кг масла.
Слайд 10Масштаб
пример решения задачи
Задача. Расстояние между
станциями Луганск и Россошь равна 185 км. Какое расстояние между
этими городами на карте, если масштаб 1:5000000?
Решение
1 : Х = 5 000 000 : 18 500 000
Х = 18 500 000 : 5 000 000
Х = 3,7
Ответ: расстояние между городами Луганск и Россошь на карте равно
3,7 см.
Слайд 11
Обратная пропорциональность
Пример решения задачи с помощью пропорции
Задача. Для строительства стадиона 5 бульдозеров расчистили площадку за
210 мин. За какое время 7 бульдозеров расчистили бы эту площадку?
Решение.
Количество бульдозеров и время расчистки площадки находятся пропорциональной зависимости, значит можно составить пропорцию: 5 : 7 = Х : 210
Х = 5 • 210 :7
Х = 150
Ответ: 7 бульдозеров расчистят площадку за 150 мин.
Слайд 12Задача на пропорциональное деление
Задача.
Найти смежные углы, если их величины находятся в отношении 2 :7.
Решение
Пусть 1 часть равна Х0, тогда первый угол равен 2Х0,
второй угол равен 7Х0.
По свойству смежных углов их сумма равна 1800, значит
2Х + 7Х = 180
9Х = 180
Х =20
7 • 200 = 1400
2 • 200 = 400
Ответ: 400; 1400.
Слайд 13Теорема Фалеса
Если параллельные прямые,
пересекающие стороны
угла,
отсекают на одной его стороне
равные отрезки,
то они отсекают равные отрезки
и на другой его стороне.
Можно также доказать,
что параллельные прямые,
пересекающие стороны угла,
отсекают от сторон угла
пропорциональные отрезки.
Слайд 14Преобразование подобия
Преобразования, сохраняющие форму фигур,
но изменяющие их размеры
называют преобразованием подобия.
Каждую фигуру F преобразование подобия переводит в подобную ей фигуру F', представляющую собой увеличенную или уменьшенную копию первоначальной фигуры.
Слайд 16Коэффициент подобия
Все размеры фигуры F' равны
соответствующим размерам фигуры F, умноженным на одно и то же
число к – коэффициент подобия.
Слайд 17 Примеры подобия фигур
Модель автомашины - это уменьшенная копия оригинала.
Слайд 18 Перед тем, как построить какое-то здание сооружают
его макет.
Макет-это тоже уменьшенная копия оригинала.
Примеры
подобия фигур
продолжение
Слайд 19Как получить подобные фигуры
Подобные фигуры можно
получить поместив под лампой вырезанную из куска картона фигуру F,
плоскость которой параллельна поверхности стола. Тень F', отбрасываемая этой фигурой на стол, будет подобна
фигуре F.
Слайд 20Гомотетия
Гомотетия с центром О и коэффициентом k -это
преобразование подобия, переводящее каждую точку А в точку А' луча
ОА, что ОА' : ОА = k
Слайд 21Роль пропорции
в искусстве
Пропорция в искусстве определяет соотношение отдельных элементов
и всего художественного произведения
в целом.
Слайд 22Роль пропорции
в архитектуре
В архитектуре пропорции являются
важным и
надежным средством для достижения
равновесия
между целым
и его частями.
Слайд 23Заключение
Нет идеальной
красоты
без некоторой
странности
пропорций.