Разделы презентаций


ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

Содержание

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКАРасчёт цепей с несколькими источниками питания. Расчёт цепей с несколькими источниками питания основан на примене-нии первого и второго законов Кирхгофа. Последовательность расчёта:1) по возможности упрощают схему,

Слайды и текст этой презентации

Слайд 1ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА Лекция 2
Законы

Кирхгофа.
Первый закон Киргофа.
Алгебраическая сумма токов в узловой точке равна нулю.

Σ Ii = 0
Узловой точкой (узлом) называется точка соединения более 2-х ветвей.
Алгебраическая сумма подразумевает суммирование токов с учетом знака.
Токи, притекающие к узловой точке, считаются положительными. Токи,
уходящие от узловой точки, считаются отрицательными.
Второй закон Кирхгофа.
Во всяком замкнутом контуре алгебраическая сумма э.д.с. равна сумме
падений напряжений на элементах этого контура. Σ Еi = Σ I∙Ri
При записи второго закона Кирхгофа необходимо задать направление об-
хода контура.
При обходе замкнутого контура по часовой стрелке (или против часовой
стрелки) э.д.с. и токи, направление которых совпадают с принятым напра-
влением обхода, следует считать положительными, а э.д.с. и токи, направ-
ленные встречно – отрицательными. Иногда удобно пользоваться другой
формой записи закона Σ Еi = Σ Ui + Σ I∙Ri.
ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА     Лекция 2Законы Кирхгофа.Первый закон Киргофа.Алгебраическая сумма токов в узловой

Слайд 2ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА
Расчёт цепей с несколькими источниками питания.

Расчёт цепей с несколькими источниками питания основан на примене-
нии первого

и второго законов Кирхгофа.
Последовательность расчёта:
1) по возможности упрощают схему, заменяя несколько сопротивлений эк-
вивалентным;
2) наносят на схеме известные направления э.д.с.;
3) задаются положительными направлениями токов;
4) составляют уравнения по первому закону Кирхгофа для всех узловых
точек, кроме одной;
5) составляют недостающие уравнения по второму закону Кирхгофа;
6) решают систему уравнений и определяют неизвестные токи.
Если некоторые значения токов получаются со знаком «минус», то это
означает, что они имеют направления, обратные тем, которые были услов-
но приняты для этих токов в начале расчёта.
Этот метод удобен при небольшом количестве неизвестных токов. При
большом числе неизвестных система получается слишком громоздкой.
ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКАРасчёт цепей с несколькими источниками питания.  Расчёт цепей с несколькими источниками питания основан

Слайд 3ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА
Пример расчёта цепи с 2-мя источниками питания.

Рассмотрим цепь, состоящую из двух источников э.д.с. Е1 и

Е2 и 5-ти сопротивлений R1-R5

В соответствии с изложен-
ным алгоритмом упроща-
ем схему, заменяя сопро-
тивления R3, R4, R5 экви-

валентным Rэ. Записываем уравнение по 1-му зако-
ну Кирхгофа
I1+ I2= I3. Составляем недостающие 2 уравнения по 2-му закону Кирхгофа
E1- E2= I1∙R1- I2∙R2
E1= I1∙R1+ I3∙Rэ
Решая систему 3-х уравнений с 3-мя неизвестными, находим токи I1, I2, I3.
Затем находим напряжение UАВ и далее токи I4 и I5.

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКАПример расчёта цепи с 2-мя источниками питания. Рассмотрим цепь, состоящую  из двух источников

Слайд 4ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА
Метод наложения (суперпозиции).
Расчёт цепей с несколькими источниками

питания с использованием
законов Кирхгофа усложняется при числе источников больше

2-х. В этом
случае система уравнений становится слишком громоздкой.
Метод наложения основан на принципе независимости действия элект-
родвижущих сил. Токи, протекающие в цепи при наличии нескольких э.д.с.
можно представить как алгебраическую сумму токов, вызываемых каждой
из э.д.с. в отдельности.
Расчёт производят, полагая все э.д.с., кроме одной, равными нулю. При
этом сохраняют все сопротивления неизменными. Расчёт проводят столько
раз, сколько э.д.с. в цепи. Действительный ток в каждой ветви находится
как сумма найденных частичных токов.
Рассмотрим метод наложения на примере той же схемы с 2-мя источни-
ками э.д.с., что и в ранее рассмотренном методе. Для этого вначале иск-
лючаем из схемы 2-й источник и рассчитываем результирующее сопротив-
ление цепи. После этого, используя закон Ома, находим ток в цепи остав-
шегося источника и токи в ветвях. Аналогично – со 2-м источником.
ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКАМетод наложения (суперпозиции).Расчёт цепей с несколькими источниками питания с использованием законов Кирхгофа усложняется при

Слайд 5ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА
Метод наложения (суперпозиции).

Полагая, что в цепи действует

только э.д.с. Е1, на-
ходим результирующее сопротивление цепи:

Ток в неразветвлённой части

схемы I1’ = E1/R’рез

Напряжение между точками разветвления:
Токи в ветвях: I2’= UAB’/R2; I3’= UAB’/RЭ.

Полагая, что в цепи действует только э.д.с. Е2, на-
ходим результирующее сопротивление цепи:


Ток в неразветвлённой части I2’’= E2/Rрез’’.
Напряжение между точками А и В:

Токи в ветвях: I1’’= UAB’’/R1; I3’’= UAB’’/RЭ.
Осуществляем суперпозицию токов:
I3 = I3’ + I3’’; I1 = I1’- I1’’; I2 = I2’- I2’’.

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКАМетод наложения (суперпозиции).Полагая, что в цепи действует только э.д.с. Е1, на-ходим результирующее сопротивление цепи:Ток

Слайд 6ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА
Метод контурных токов.
Метод позволяет освободиться от составления

уравнений по первому
закону Кирхгофа и тем самым сократить число

решаемых уравнений.

Рассмотрим метод контурных токов на примере представленной схемы, содержащей 4 узловые точки A,D,B,C
Выделим в схеме 3 замкнутых конту-
ра и обозначим токи в этих контурах
II, III, IIII. Составим для каждого кон-
тура уравнения по второму закону Кирхгофа, выбрав направление обхо-
да по часовой стрелке.

В первом контуре действует 2 источника э.д.с., направление которых сов-
падает с направлением обхода контура. Падение напряжения на резисто-
рах R1, R2, R3, R4 создаётся контурным током II. Кроме того, на резисторе R3 создаёт падение напряжения контурный ток III, направленный встречно.

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКАМетод контурных токов.Метод позволяет освободиться от составления уравнений по первому закону Кирхгофа и тем

Слайд 7ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА
На резисторе R4 создаёт падение напряжения контурный

ток IIII, также
направленный встречно направлению обхода. Таким образом, уравнение


по второму закону Кирхгофа для 1-го контура:

Во 2-м контуре действуют 2 источника э.д.с., причём источник E2 направ-
лен встречно направлению обхода. Падение напряжения создаётся током
III на резисторах R3, R5, R6, R7, а также током II на резисторе R3 и током IIII
на резисторе R7. Уравнение Кирхгофа:

В 3-м контуре действуют источники э.д.с. E1, E3, E4. Падение напряжения
создаётся током IIII на резисторах R4, R7, R8, а также токами II на резисто-
ре R4, III на резисторе R7. Уравнение Кирхгофа:

После нахождения контурных токов из решения системы уравнений, опре-
деляются токи в ветвях: I1 = II; I2 = III – II; I3 = III; I4 = III – IIII;
I5 = II – IIII; I6 = IIII.

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКАНа резисторе R4 создаёт падение напряжения контурный ток IIII, также направленный встречно направлению обхода.

Слайд 8Расчёт цепей постоянного тока
Метод узловых напряжений
Метод узловых напряжений применяют для

расчёта схем, имеющих неско-
лько параллельных ветвей, сходящихся в двух узловых

точках. Рассмотрим
этот метод на примере схемы из 5-ти параллельных ветвей с 3-мя источниками э.д.с.

Примем направление токов во всех ветвях оди-
наковыми – от узла В к узлу А. Напряжение UAB
между точками А и В назовём узловым напряже-
нием. Применим к ветви с э.д.с. Е1 второй закон
Кирхгофа: E1= UAB+ I1R1,
откуда

Аналогичным путём получим:

Расчёт цепей постоянного токаМетод узловых напряженийМетод узловых напряжений применяют для расчёта схем, имеющих неско-лько параллельных ветвей, сходящихся

Слайд 9Расчёт цепей постоянного тока
Метод узловых напряжений
По первому закону Кирхгофа I1+

I2+ I3+ I4+ I5= 0. Или:
(E1- UAB)g1+ (-E2- UAB)g2- UABg3+

(E4-UAB)g4- UABg5= 0. Отсюда получаем фор-
мулу для определения узлового напряжения:





Произведение Ekgk для k-ой ветви следует брать со знаком минус, если на-
правление э.д.с. Ek противоположно принятому направлению тока. Опре-
делив узловое напряжение, находят значения токов в отдельных ветвях.
Если значение тока получилось со знаком минус, это означает, что напра-
вление тока в ветви противоположно тому, которое было принято перво-
начально.
Расчёт цепей постоянного токаМетод узловых напряженийПо первому закону Кирхгофа I1+ I2+ I3+ I4+ I5= 0. Или:(E1- UAB)g1+

Слайд 10Расчёт цепей постоянного тока
Нелинейные электрические цепи постоянного тока.

Линейной называется электрическая цепь для которой справедлив за-
кон Ома. Другими

словами – это цепь с постоянным сопротивлением.
Вольтамперная характерис-
тика линейной цепи.

Нелинейная цепь – цепь, для которой не вы-
полняется закон Ома. Это происходит в тех случаях, когда сопротивление цепи не посто-
яннНо, а зависит от протекающего тока. При-
мерами нелинейных цепей являются барет-
тер, вакуумный и полупроводниковый диоды.

Расчёт цепей постоянного токаНелинейные электрические цепи постоянного тока.   Линейной называется электрическая цепь для которой справедлив

Слайд 11Нелинейные электрические цепи постоянного тока.
Для расчёта нелинейных цепей используются графоаналитические

ме-
тоды, основанные на применении законов Кирхгофа и вольтамперных ха-
рактеристик нелинейных

элементов.
Последовательное соединение элементов.

На рисунке кривые 1 и 2 – вольтамперные характе-
ристики нелинейных эле-
ментов R1 и R2. Проводим горизонтальные линии по-
стоянного тока. Пересече-
ния этих линий с характе-

ристиками 1, 2 дают падение напряжения на соответствующих участках последовательной цепи. Сумма падений напряжения U1 и U2 представляет собой результирующее напряжение U на всей последовательной цепи. Проводя графическое суммирование падений напряжений при различных значениях тока в цепи, строим характеристику 3 всей последовательной нелинейной цепи. По этой характеристике определяют падение напряже- ния при заданном токе или по заданному напряжению определяют величину тока в цепи.

Нелинейные электрические цепи постоянного тока. Для расчёта нелинейных цепей используются графоаналитические ме-тоды, основанные на применении законов Кирхгофа

Слайд 12Нелинейные электрические цепи постоянного тока.
Параллельное соединение элементов.

На участке параллельного сое-

динения одинаково напряжение
Поэтому на вольтамперных ха-
рактеристиках нелинейных эле- ментов (1,2)

проводят вертика- льные линии постоянного нап- ряжения. Пересечения этих ли- ний с характеристиками 1, 2 да- ют значения токов через нели-

нейные элементы. Графическое сложение этих токов даёт вольтамперную характеристику 3 всей нелинейной цепи. Таким образом, для расчёта цепи параллельно соединённых элементов используют эту характеристику.
Смешанная цепь.
Цепь, состоящую из участка параллельно соединённых элементов и участ- ка последовательного соединения, рассчитывают по тем же принципам, что и линейную смешанную цепь. Т.е. вначале рассчитывают параллель- ный участок, а затем последовательный.

Нелинейные электрические цепи постоянного тока. Параллельное соединение элементов.На участке параллельного сое- динения одинаково напряжениеПоэтому на вольтамперных ха-рактеристиках

Слайд 13Нелинейные электрические цепи постоянного тока.
Смешанная цепь
На графике кривые 1 и

2 – вольтамперные характери-стики нелинейных элемен-тов R1 и R2. Складывая

то-ки при постоянных значе-ниях напряжения на учас-тке параллельной цепи, получаем вольтамперную характеристику параллель-ного участка R1,2 (красная кривая).

Эквивалентное сопротивление R1,2 и нелинейное сопротивление R3 образу-ют последовательную цепь. Складывая при постоянных значениях токов напряжения на кривых 1,2 и 3, получаем результирующую характеристику всей нелинейной цепи (синяя кривая). По этой характеристике можно оп-ределить общий ток в цепи (I3) при заданном напряжении U на входе.
Точно так же по заданному току в цепи можно определить падение напря-жения на нелинейном участке.

Нелинейные электрические цепи постоянного тока. Смешанная цепьНа графике кривые 1 и 2 – вольтамперные характери-стики нелинейных элемен-тов

Слайд 14ЭЛЕКТРОМАГНЕТИЗМ
Магнитное поле.
Вокруг любого проводника с током возникает магнитное поле. Магнит-
ное

поле вокруг прямолинейного проводника с током показано на рисунке.
Направление магнитных

линий и направление создающего их тока связаны между собой пра-вилом правого винта (буравчика).
Основной величиной, характеризующей ин-тенсивность и направление магнитного поля, является вектор магнитной индукции В. Этот вектор направлен по касательной к магнитной линии или от северного полюса к южному.

Магнитное поле соленоида.

Катушка из равномерно намотанного провод-ника называется соленоидом. Если по катуш-ке пропустить постоянный ток, магнитные по-ля вокруг витков складываясь, образуют од-нородное магнитное поле внутри соленоида. Соленоид, показанный на рисунке, является электромагнитом с северным полюсом в верх-ней части и южным – в нижней части.

ЭЛЕКТРОМАГНЕТИЗММагнитное поле.Вокруг любого проводника с током возникает магнитное поле. Магнит-ное поле вокруг прямолинейного проводника с током показано

Слайд 15ЭЛЕКТРОМАГНЕТИЗМ
Магнитное поле.
Второй важной величиной, характеризующей магнитное поле является
магнитный поток

Ф. Магнитный поток связан с индукцией магнитного поля
соотношением Ф

= B∙S∙cos α, где α – угол между направлением вектора
индукции и нормалью к плоскости, через которую проходит магнитный по-
ток.

В системе СИ единица измерения магнитной индукции – Тесла (Тл), а магнитного потока – Вебер (Вб).
Ещё одной характеристикой магнитного поля является напряженность магнитного поля Н. Единица измерения напряженности А/м. Вектор магнитной индукции и вектор напряженности

связаны соотношением В = μа∙Н, где μа- абсолютная магнитная проницае-мость среды: μа= μ∙μ0. Здесь μ0= 4π∙10-7 Гн/м – абсолютная магнитная про-ницаемость вакуума; μ – относительная магнитная проницаемость среды. У ферромагнитных материалов величина μ >> 1 и может достигать неско-льких тысяч или даже десятков тысяч. Поэтому при одной и той же напря-женности поля магнитный поток в ферромагнитном материале много боль-ше магнитного потока в немагнитных материалах.

ЭЛЕКТРОМАГНЕТИЗММагнитное поле.Второй важной величиной, характеризующей магнитное поле является магнитный поток Ф. Магнитный поток связан с индукцией магнитного

Слайд 16ЭЛЕКТРОМАГНЕТИЗМ
Магнитные цепи.
Магнитной цепью называют совокупность нескольких участков – ферро-
магнитных и

неферромагнитных, по которым замыкаются линии магнитно-
го потока.
Закон

полного тока.
Математическим выражением этого закона служит следующая формула:

Здесь Н – вектор напряженности магнитного поля в данной точке простра-нства; dl – элемент длины замкнутого контура l; α – угол между направле-нием векторов H и dl; Σ Ii – алгебраическая сумма токов, пронизывающих контур l.

Ток считается положительным, если принятое направление обхода контура и направление тока связаны между со-бой правилом буравчика. Для приведе-нного примера ток I1- отрицателен, а токи I2, Ik- положительны.

ЭЛЕКТРОМАГНЕТИЗММагнитные цепи.Магнитной цепью называют совокупность нескольких участков – ферро-магнитных и неферромагнитных, по которым замыкаются линии магнитно-го потока.

Слайд 17ЭЛЕКТРОМАГНЕТИЗМ
Закон Ома для магнитной цепи.
Рассмотрим простейшую магнитную цепь, выполненную в

виде кольца
из однородного материала. Намагничивающая обмотка расположена рав-
номерно по кольцу,

имеет w витков и обтекается током I. Магнитные линии внутри кольца представляют собой концентрические окружности.
Запишем закон полного тока, учитывая, что: 1) нап-равления векторов Н и dl совпадают, следовательно, угол α равен нулю; 2) величина Нх во всех точках кон-тура в силу симметрии одинакова; 3) сумма токов, про-низывающих контур равна Iw. Тогда Нхlx = Iw. Отсюда


где lx – длина контура; rx – радиус окружности. Магнитный поток в кольце

Произведение Iw = F получило название намагничивающей силы. Величину


l/μaS = Rm называют магнитным сопротивлением. В связи с этим получен-ную формулу принято называть законом Ома для магнитной цепи.

ЭЛЕКТРОМАГНЕТИЗМЗакон Ома для магнитной цепи.Рассмотрим простейшую магнитную цепь, выполненную в виде кольцаиз однородного материала. Намагничивающая обмотка расположена

Слайд 18ЭЛЕКТРОМАГНЕТИЗМ
Электромагнитная индукция.
Явление электромагнитной индукции, открытое Фарадеем, заключается
в том, что при

изменении магнитного потока Ф, пронизывающего контур, в
этом контуре индуцируется

э.д.с.
Под действием э.д.с. в контуре возникает ток, направление которого сов-
падает с направлением э.д.с.
Знак «минус» введен в соответствии с принципом электромагнитной
инерции, установленным Ленцем. Согласно этому принципу, всякий элект-
рический контур стремится сохранить пронизывающий его магнитный по-
ток.

Рисунки иллюстрируют про-тиводействие меняющемуся магнитному потоку при его увеличении и поддержание уменьшающегося потока. Ес-ли контур состоит из w вит-ков, э.д.с. индукции:
Е = - w∙dФ/dt

ЭЛЕКТРОМАГНЕТИЗМЭлектромагнитная индукция.Явление электромагнитной индукции, открытое Фарадеем, заключаетсяв том, что при изменении магнитного потока Ф, пронизывающего контур, в

Слайд 19ЭЛЕКТРОМАГНЕТИЗМ
Электромагнитная индукция.
При движении проводника, расположенного перпендикулярно к линиям
магнитного поля, индуцируемая

э.д.с. определяется по формуле:
E = B∙l∙v∙sin α, где l –

длина проводника в магнитном поле; v – скорость
его движения; α – угол между вектором скорости и вектором индукции.

Направление э.д.с. определяется правилом правой руки: правую руку располагают так, чтобы вектор индукции входил в ла-донь, а большой палец указывал направле-ние вектора скорости. Тогда четыре вытянутых пальца покажут направление э.д.с., а следовательно и направление тока.

ЭЛЕКТРОМАГНЕТИЗМЭлектромагнитная индукция.При движении проводника, расположенного перпендикулярно к линияммагнитного поля, индуцируемая э.д.с. определяется по формуле:E = B∙l∙v∙sin α,

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика