Разделы презентаций


Лекция 22. КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ. МАТЕРИАЛЫ ПОРОШКОВОЙ МЕТАЛЛУРГИИ:

Содержание

22.1. Композиционные материалы Композиционные материалы – искусственно созданные материалы, которые состоят из двух или более компонентов, различающихся по составу и разделенных выраженной границей, и которые имеют новые свойства, запроектированные заранее. Компоненты композиционного материала

Слайды и текст этой презентации

Слайд 1Лекция 22. КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ. МАТЕРИАЛЫ ПОРОШКОВОЙ МЕТАЛЛУРГИИ: ПОРИСТЫЕ, КОНСТРУКЦИОННЫЕ,

ЭЛЕКТРОТЕХНИЧЕСКИЕ

1. Композиционные материалы
2. Материалы порошковой металлургии
3. Пористые порошковые материалы
4. Прочие пористые изделия.
5. Конструкционные порошковые материалы
6. Спеченные цветные металлы.
7. Электротехнические порошковые материалы
8. Магнитные порошковые материалы.

Лекция 22. КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ. МАТЕРИАЛЫ ПОРОШКОВОЙ МЕТАЛЛУРГИИ: ПОРИСТЫЕ, КОНСТРУКЦИОННЫЕ,

Слайд 222.1. Композиционные материалы
Композиционные материалы – искусственно созданные материалы, которые состоят

из двух или более компонентов, различающихся по составу и разделенных

выраженной границей, и которые имеют новые свойства, запроектированные заранее.
Компоненты композиционного материала различны по геометрическому признаку.
Компонент, непрерывный во всем объеме композиционного материала, называется матрицей.
Компонент прерывистый, разделенный в объеме композиционного материала, называется арматурой.
Матрица придает требуемую форму изделию, влияет на создание свойств композиционного материала, защищает арматуру от механических повреждений и других воздействий среды.
22.1. Композиционные материалы		Композиционные материалы – искусственно созданные материалы, которые состоят из двух или более компонентов, различающихся по

Слайд 3 В качестве матриц в композиционных материалах могут быть использованы металлы

и их сплавы, полимеры органические и неорганические, керамические, углеродные и

другие материалы. Свойства матрицы определяют технологические параметры процесса получения композиции и ее эксплуатационные свойства: плотность, удельную прочность, рабочую температуру, сопротивление усталостному разрушению и воздействию агрессивных сред. Армирующие или упрочняющие компоненты равномерно распределены в матрице. Они, как правило, обладают высокой прочностью, твердостью и модулем упругости и по этим показателям значительно превосходят матрицу. Вместо термина армирующий компонент можно использовать термин наполнитель. Композиционные материалы классифицируют по геометрии наполнителя, расположению его в матрице, природе компонентов.
В качестве матриц в композиционных материалах могут быть использованы металлы и их сплавы, полимеры органические и неорганические,

Слайд 4 По геометрии наполнителя композиционные материалы подразделяются на три группы: - с

нуль-мерными наполнителями, размеры которых в трех измерениях имеют один и

тот же порядок; - с одномерными наполнителями, один из размеров которых значительно превышает два других; - с двухмерными наполнителями, два размера которых значительно превышают третий. По схеме расположения наполнителей выделяют три группы композиционных материалов: * с одноосным (линейным) расположением наполнителя в виде волокон, нитей, нитевидных кристаллов в матрице параллельно друг другу; * с двухосным (плоскостным) расположением армирующего наполнителя, матов из нитевидных кристаллов, фольги в матрице в параллельных плоскостях; * с трехосным (объемным) расположением армирующего наполнителя и отсутствием преимущественного направления в его расположении.
По геометрии наполнителя композиционные материалы подразделяются на три группы: 	- с нуль-мерными наполнителями, размеры которых в трех

Слайд 5 По природе компонентов композиционные материалы разделяются на четыре группы: -

композиционные материалы, содержащие компонент из металлов или сплавов; - композиционные

материалы, содержащие компонент из неорганических соединений оксидов, карбидов, нитридов и др.; - композиционные материалы, содержащие компонент из неметаллических элементов, углерода, бора и др.; - композиционные материалы, содержащие компонент из органических соединений эпоксидных, полиэфирных, фенольных и др. Свойства композиционных материалов зависят не только от физико-химических свойств компонентов, но и от прочности связи между ними. Максимальная прочность достигается, если между матрицей и арматурой происходит образование твердых растворов или химических соединений.
По природе компонентов композиционные материалы разделяются на четыре группы:  	- композиционные материалы, содержащие компонент из металлов

Слайд 6 В композиционных материалах с нуль-мерным наполнителем наибольшее распространение получила металлическая

матрица. Композиции на металлической основе упрочняются равномерно распределенными дисперсными частицами

различной дисперсности. Такие материалы отличаются изотропностью свойств. В таких материалах матрица воспринимает всю нагрузку, а дисперсные частицы наполнителя препятствуют развитию пластической деформации. Эффективное упрочнение достигается при содержании 5... 10 % частиц наполнителя. Армирующими наполнителями служат частицы тугоплавких оксидов, нитридов, боридов, карбидов. Дисперсионно упрочненные композиционные материалы получают методами порошковой металлургии или вводят частицы армирующего порошка в жидкий расплав металла или сплава. Промышленное применение нашли композиционные материалы на основе алюминия, упрочненные частицами оксида алюминия ( ).
В композиционных материалах с нуль-мерным наполнителем наибольшее распространение получила металлическая матрица. Композиции на металлической основе упрочняются равномерно

Слайд 7 Их получают прессованием алюминиевой пудры с последующим спеканием (САП). Преимущества

САП проявляются при температурах выше 300°С, когда алюминиевые сплавы разупрочняются.

Дисперсионно упрочненные сплавы сохраняют эффект упрочнения до температуры . Сплавы САП удовлетворительно деформируются, легко обрабатываются резанием, свариваются аргонодуговой и контактной сваркой. Из САП выпускают полуфабрикаты в виде листов, профилей, труб, фольги. Из них изготавливают лопатки компрессоров, вентиляторов и турбин, поршневые штоки. В композиционных материалах с одномерными наполнителями упрочнителями являются одномерные элементы в форме нитевидных кристаллов, волокон, проволоки, которые скрепляются матрицей в единый монолит. Важно, чтобы прочные волокна были равномерно распределены в пластичной матрице. Для армирования композиционных материалов используют непрерывные дискретные волокна с размерами в поперечном сечении от долей до сотен микрометров.
Их получают прессованием алюминиевой пудры с последующим спеканием (САП). Преимущества САП проявляются при температурах выше 300°С, когда

Слайд 8 Материалы, армированные нитевидными монокристаллами, были созданы в начале семидесятых годов

для авиационных и космических конструкций. Основным способом выращивания нитевидных кристаллов

является выращивание их из перенасыщенного пара (ПК-процесс). Для производства особо высокопрочных нитевидных кристаллов оксидов и других соединений осуществляется рост по П-Ж-К - механизму: направленный рост кристаллов происходит из парообразного состояния через промежуточную жидкую фазу. Осуществляется создание нитевидных кристаллов вытягиванием жидкости через фильеры. Прочность кристаллов зависит от сечения и гладкости поверхности. Композиционные материалы этого типа перспективны как высокожаропрочные материалы. Для увеличения к.п.д. тепловых машин лопатки газовых турбин изготавливают из никелевых сплавов, армированных нитями сапфира ( ), это позволяет значительно повысить температуру на входе в турбину (предел прочности сапфировых кристаллов при температуре 1680°С выше 700 МПа).
Материалы, армированные нитевидными монокристаллами, были созданы в начале семидесятых годов для авиационных и космических конструкций.  	Основным

Слайд 9 Армирование сопел ракет из порошков вольфрама и молибдена производят кристаллами

сапфира как в виде войлока, так и отдельных волокон, в

результате этого удалось удвоить прочность материала при температуре 1650°С. Армирование пропиточного полимера стеклотекстолитов нитевидными волокнами увеличивает их прочность. Армирование литого металла снижает его хрупкость в конструкциях. Перспективно упрочнение стекла неориентированными нитевидными кристаллами. Для армирования композиционных материалов применяют металлическую проволоку из разных металлов: стали разного состава, вольфрама, ниобия, титана, магния – в зависимости от условий работы. Стальная проволока перерабатывается в тканые сетки, которые используются для получения композиционных материалов с ориентацией арматуры в двух направлениях. Для армирования легких металлов применяются волокна бора, карбида кремния. Особенно ценными свойствами обладают углеродистые волокна, их применяют для армирования металлических, керамических и полимерных композиционных материалов.
Армирование сопел ракет из порошков вольфрама и молибдена производят кристаллами сапфира как в виде войлока, так и

Слайд 10 Эвтектические композиционные материалы – сплавы эвтектического или близкого к эвтектическому

состава, в которых упрочняющей фазой выступают ориентированные кристаллы, образующиеся в

процессе направленной кристаллизации. В отличие от обычных композиционных материалов, эвтектические получают за одну операцию. Направленная ориентированная структура может быть получена на уже готовых изделиях. Форма образующихся кристаллов может быть в виде волокон или пластин. Способами направленной кристаллизации получают композиционные материалы на основе алюминия, магния, меди, кобальта, титана, ниобия и других элементов, поэтому они используются в широком интервале температур. Полимерные композиционные материалы. Особенностью является то, что матрицу образуют различные полимеры, служащие связующими для арматуры, которая может быть в виде волокон, ткани, пленок, стеклотекстолита.
Эвтектические композиционные материалы – сплавы эвтектического или близкого к эвтектическому состава, в которых упрочняющей фазой выступают ориентированные

Слайд 11 Формирование полимерных композиционных материалов осуществляется прессованием, литьем под давлением, экструзией,

напылением. Широкое применение находят смешанные полимерные

композиционные материалы, куда входят металлические и полимерные составляющие, которые дополняют друг друга по свойствам. Например, подшипники, работающие в условиях сухого трения, изготовляют из комбинации фторопласта и бронзы, что обеспечивает самосмазываемость и отсутствие ползучести. Созданы материалы на основе полиэтилена, полистирола с наполнителями в виде асбеста и других волокон, обладающие высокими прочностью и жесткостью.
Формирование полимерных композиционных материалов осуществляется прессованием, литьем под давлением, экструзией, напылением. 	Широкое  применение  находят

Слайд 1222.2. Материалы порошковой металлургии
Порошковая металлургия – область техники, охватывающая процессы

получения порошков металлов и металлоподобных соединений и процессы изготовления изделий

из них без расплавления.
Характерной особенностью порошковой металлургии является применение исходного материала в виде порошков, из которых прессованием формуются изделия заданной формы и размеров.
Полученные заготовки подвергаются спеканию при температуре ниже температуры плавления основного компонента.
Основными достоинствами технологии производства изделий методом порошковой металлургии являются возможность изготовления деталей из тугоплавких металлов и соединений, когда другие методы использовать невозможно; значительная экономия металла за счет получения изделий высокой точности, в минимальной степени нуждающихся в последующей механической обработке (отходы составляют не более 1.. .3 %); возможность получения материалов максимальной чистоты; простота технологии порошковой металлургии.
22.2. Материалы порошковой металлургии 		Порошковая металлургия – область техники, охватывающая процессы получения порошков металлов и металлоподобных соединений

Слайд 13 Методом порошковой металлургии изготавливают твердые сплавы, пористые материалы: антифрикционные и

фрикционные, фильтры; электропроводники, конструкционные детали, в том числе работающие при

высоких температурах и в агрессивных средах. 22.3. Пористые порошковые материалы Отличительной особенностью является наличие равномерной объемной пористости, которая позволяет получать требуемые эксплуатационные свойства. Антифрикционные материалы (пористость 15...30 %), широко применяющиеся для изготовления подшипников скольжения, представляют собой пористую основу, пропитанную маслом. Масло поступает из пор на поверхность, и подшипник становится самосмазывающимся, не требуется подводить смазку извне. Это существенно для чистых производств (пищевая, фармацевтическая отрасли). Такие подшипники почти не изнашивают поверхность вала, шум в 3...4 раза меньше, чем от шариковых подшипников.
Методом порошковой металлургии изготавливают твердые сплавы, пористые материалы: антифрикционные и фрикционные, фильтры; электропроводники, конструкционные детали, в том

Слайд 14 Подшипники работают при скоростях трения до 6 м/с при нагрузках

до 600 МПа. При меньших нагрузках скорости скольжения могут достигать

20...30 м/с. Коэффициент трения подшипников – 0,04.. .0,06. Для изготовления используются бронзовые или железные порошки с добавлением графита(1...3 %). Разработаны подшипниковые спеченные материалы на основе тугоплавких соединений (боридов, карбидов и др.), содержащие в качестве твердой смазки сульфиды, селениды и гексагональный нитрид бора. Подшипники могут работать в условиях вакуума и при температурах до 500°С. Применяют металлопластмассовые антифрикционные материалы: спеченные бронзографиты, титан, нержавеющие стали пропитывют фторопластом. Получаются коррозионностойкие и износостойкие изделия. Срок службы металлопластмассовых материалов вдвое больше, чем материалов других типов.
Подшипники работают при скоростях трения до 6 м/с при нагрузках до 600 МПа. При меньших нагрузках скорости

Слайд 15 Фрикционные материалы (пористость 10... 13 %) предназначены для работы в

муфтах сцепления и тормозах. Условия работы могут быть очень тяжелыми:

трущиеся поверхности мгновенно нагреваются до 1200°С, а материал в объеме – до 500...600°С. Применяют спеченные многокомпонентные материалы, которые могут работать при скоростях трения до 50 м/с на нагрузках 350...400 МПа. Коэффициент трения при работе в масле – 0,08...0,15, при сухом трении – до 0,7. По назначению компоненты фрикционных материалов разделяют на группы: а) основа – медь и ее сплавы – для рабочих температур 500...600°С, железо, никель и сплавы на их основе – для работы при сухом трении и температурах 1000...1200°С; б) твердые смазки – предотвращают микросхватывание при торможении и предохраняют фрикционный материал от износа; используют свинец, олово, висмут, графит, сульфиты бария и железа, нитрид бора;
Фрикционные материалы (пористость 10... 13 %) предназначены для работы в муфтах сцепления и тормозах. 	Условия работы могут

Слайд 16 в) материалы, обеспечивающие высокий коэффициент трения – асбест, кварцевый песок,

карбиды бора, кремния, хрома, титана, оксиды алюминия и хрома и

др. Примерный состав сплава: медь – 60...70 %, олово – 7 %, свинец – 5 %, цинк -5...10%, железо – 5...10 %, кремнезем или карбид кремния – 2.. .3 %, графит – 1.. .2 %. Из фрикционных материалов изготавливают тормозные накладки и диски. Так как прочность этих материалов мала, то их прикрепляют к стальной основе в процессе изготовления (припекают к основе) или после (приклепывают, приклеивают и т.д.). Фильтры (пористость 25...50 %) из спеченных металлических порошков по своим эксплуатационным характеристикам превосходят другие фильтрующие материалы, особенно когда требуется тонкая фильтрация. Они могут работать при температурах от –273°С до 900°С, быть коррозионностойкими и жаропрочными (можно очищать горячие газы). Спекание позволяет получать фильтрующие материалы с относительно прямыми тонкими порами одинакового размера.
в) материалы, обеспечивающие высокий коэффициент трения – асбест, кварцевый песок, карбиды бора, кремния, хрома, титана, оксиды алюминия

Слайд 17 Изготавливают фильтры из порошков коррозионностойких материалов: бронзы, нержавеющих сталей, никеля,

серебра, латуни и др. Для удовлетворения запросов металлургической промышленности разработаны

материалы на основе никелевых сплавов, титана, вольфрама, молибдена и тугоплавких соединений. Такие фильтры работают тысячи часов и поддаются регенерации в процессе работы. Их можно продуть, протравить, прожечь. Фильтрующие материалы выпускают в виде чашечек, цилиндров, втулок, дисков, плит. Размеры колеблются от дисков диаметром 1,5 мм до плит размерами 450 х 1000 мм. Наиболее эффективно применение фильтров из нескольких слоев с различной пористостью и диаметром пор.
Изготавливают фильтры из порошков коррозионностойких материалов: бронзы, нержавеющих сталей, никеля, серебра, латуни и др.  	Для удовлетворения

Слайд 1822.4. Прочие пористые изделия
"Потеющие сплавы" – материалы, через стенки которых

к рабочей наружной поверхности детали поступает жидкость или газ. Благодаря

испарению жидкости температура поверхности понижается (лопатки газовых турбин).
Сплавы выпускаются на основе порошка нихром с порами диаметром до 10... 12 мкм при пористости 30 %. Сплавы этого типа используются и для решения обратной задачи: крылья самолетов покрывают пористым медно-никелевым слоем и подают через него на поверхность антифриз, препятствующий обледенению.
Пеноматериалы – материалы с очень высокой пористостью, 95...98 %. Например, плотность вольфрама 19,3 , а пеновольфрама – всего 3 . Такие материалы используют в качестве легких заполнителей и теплоизоляции в авиационной технике.
22.4. Прочие пористые изделия

Слайд 1922.5. Конструкционные порошковые материалы
Спеченные стали. Типовыми порошковыми деталями являются кулачки,

корпуса подшипников, ролики, звездочки распределительных валов, детали пишущих и вычислительных

машин и другие.
В основном это слабонагруженные детали, их изготавливают из порошка железа и графита. Средненагруженные детали изготавливают или двукратным прессованием – спеканием, или пропиткой спеченной детали медью или латунью.
Детали сложной конфигурации (например, две шестерни на трубчатой оси) получают из отдельных заготовок, которые насаживают одну на другую с натягом и производят спекание. Для изготовления этой группы деталей используют смеси железо – медь – графит, железо – чугун, железо – графит – легирующие элементы.
Особое место занимают шестерни и поршневые кольца. Шестерни в зависимости от условий работы изготавливают из железо – графита или из железо – графита с медью или легирующими элементами.
22.5. Конструкционные порошковые материалы 		Спеченные стали. Типовыми порошковыми деталями являются кулачки, корпуса подшипников, ролики, звездочки распределительных валов,

Слайд 20 Снижение стоимости шестерни при переходе с нарезки зубьев на спекание

порошка составляет 30...80 %. Пропитка маслом позволяет обеспечить самосмазываемость шестерни,

уменьшить износ и снизить шум при работе. Спеченные поршневые кольца изготавливают из смеси железного порошка с графитом, медью и сульфидом цинка (твердая смазка). Для повышения износостойкости делают двухслойные кольца: во внешний слой вводят хром и увеличивают содержание графита. Применение таких колец увеличивает пробег автомобильного двигателя, уменьшается износ и сокращает расход масла. Высоколегированные порошковые стали, содержащие 20 % хрома и 15 % никеля, используют для изготовления изделий, работающих в агрессивных средах.
Снижение стоимости шестерни при переходе с нарезки зубьев на спекание порошка составляет 30...80 %.  	Пропитка маслом

Слайд 2122.6. Спеченные цветные металлы
Спеченный титан и его сплавы используют в

виде полуфабрикатов (лист, трубы, пруток). Титановый каркас пропитывают магнием. Такие

материалы хорошо обрабатываются давлением.
Широко используются материалы на основе меди, например, изготавливают бронзо – графитные шестерни. Свойства спеченных латуней выше, чем литых, из-за большей однородности химического состава и отсутствия посторонних включений.
Спеченные алюминиевые сплавы используют для изготовления поршней тяжело нагруженных двигателей внутреннего сгорания и других изделий, длительное время работающих при повышенных температурах, благодаря их повышенной жаропрочности и коррозионной стойкости.
22.6. Спеченные цветные металлы 		Спеченный титан и его сплавы используют в виде полуфабрикатов (лист, трубы, пруток). Титановый

Слайд 22 Керамикометаллические материалы (керметы) содержат более 50 % керамической фазы. В

качестве керамической фазы используют тугоплавкие бориды, карбиды, оксиды и нитриды,

в качестве металлической фазы – кобальт, никель, тугоплавкие металлы, стали. Керметы отличаются высокими жаростойкостью, износостойкостью, твердостью, прочностью. Они используются для изготовления деталей конструкций, работающих в агрессивных средах при высоких температурах (например, лопаток турбин, чехлов термопар). Частным случаем керметов являются твердые сплавы.
Керамикометаллические материалы (керметы) содержат более 50 % керамической фазы.  	В качестве керамической фазы используют тугоплавкие бориды,

Слайд 2322.7. Электротехнические порошковые материалы
Электроконтактные порошковые материалы делятся на материалы для

разрывных контактов и материалы для скользящих контактов.
Материалы разрывных контактов должны

быть тепло- и электропроводными, эррозионностойкими при воздействии электрической дуги, не свариваться в процессе работы. Контактное сопротивление должно быть возможно меньшим, а критические сила тока и напряжение при образовании дуги – возможно большими.
Чистых металлов, удовлетворяющих всем этим требованиям, нет.
Изготавливают контактные материалы прессованием с последующим спеканием или пропиткой пористого тугоплавкого каркаса более легкоплавким металлом (например, вольфрам пропитывают медью или серебром).
22.7. Электротехнические порошковые материалы 		Электроконтактные порошковые материалы делятся на материалы для разрывных контактов и материалы для скользящих

Слайд 24 Тяжелонагруженные разрывные контакты для высоковольтных аппаратов делают из смесей вольфрам

– серебро – никель или железо – медь. В низковольтной

и слаботочной аппаратуре широко используют материалы на основе серебра с никелем, оксидом кадмия и другими добавками, а также медно – графитовые материалы. Скользящие контакты широко используют в приборах, коллекторных электрических машинах и электрическом транспорте (токосъемники). Представляют собой пары трения, должны обладать высокими антифрикционными свойствами, причем контакт должен быть мягче, чем контртело и не изнашивать его, так как заменить скользящий контакт проще, чем коллектор или привод. Для обеспечения антифрикционности, в состав смесей для скользящих контактов вводят твердые смазки – графит, дисульфид молибдена, гексагональный нитрид бора. Большинство контактов электрических машин изготавливают из меди с графитом.
Тяжелонагруженные разрывные контакты для высоковольтных аппаратов делают из смесей вольфрам – серебро – никель или железо –

Слайд 25 Для коллекторных пластин пантографов используют бронзографитовые контакты. Контакты приборов изготавливают из

серебра с графитом, серебра с палладием, никелем, дисульфидом молибдена, вольфрама

с палладием. 22.8. Магнитные порошковые материалы Различают магнитомягкие и магнитотвердые материалы. Магнитомягкие – это материалы с большой магнитной проницаемостью и малой коэрцитивной силой, быстро намагничиваются и быстро теряют магнитные свойства при снятии магнитного поля. Основной магнитомягкий материал – чистое железо и его сплавы с никелем и кобальтом. Для повышения электросопротивления легируют кремнием, алюминием. Для улучшения прессуемости сплавов вводят до 1 % пластмассы, которая полностью испаряется при спекании. Пористость материалов должна быть минимальной.
Для коллекторных пластин пантографов используют бронзографитовые контакты. 	Контакты приборов изготавливают из серебра с графитом, серебра с палладием,

Слайд 26 Отдельно выделяется группа магнитодиэлектриков – это частицы магнитомягкого материала, разделенные

тонким слоем диэлектрика – жидкого стекла или синтетической смолы. Таким

материалам присущи высокое электросопротивление и минимальные потери на вихревые токи и на перемагничивание. Изготавливаются в результате смешивания, прессования и спекания, особенностью является то, что при нагреве частицы магнитного материала остаются изолированными и не меняют формы. За основу используют чистое железо, альсиферы. Магнитотвердые материалы (постоянные магниты) – материалы с малой магнитной проницаемостью и большой коэрцитивной силой. Магниты массой до 100 г изготавливают из порошковых смесей такого же состава, как литые магниты: железо – алюминий – никель (альни), железо – алюминий – никель – кобальт (альнико). После спекания этих сплавов обязательна термическая обработка с наложением магнитного поля. Высокие магнитные свойства имеют магниты из сплавов редкоземельных металлов (церий, самарий, празеодим) с кобальтом.
Отдельно выделяется группа магнитодиэлектриков – это частицы магнитомягкого материала, разделенные тонким слоем диэлектрика – жидкого стекла или

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика