Слайд 1Лекция 13
Метод билинейного – преобразования,
на примере эллиптического фильтра
Одним из методов
синтеза дискретного фильтра с заданными свойствами по аналоговому прототипу является метод билинейного преобразования. В этом методе переход из s - области в z - область осуществляется с помощью следующего билинейное преобразование (bilinear transformation).
(1)
Слайд 2 Здесь Δt - шаг дискретизации, который связан с
частотой Найквиста F формулой.
(2)
На прошлой лекции для
билинейного преобразования мы нашли связь между частотными характеристиками дискретного и аналогового фильтров.
(3)
Слайд 3Значок « d » относится к дискретному фильтру, а значок
« a » к аналоговому фильтру.
Соотношение (3) записанное с
помощью частоты Найквиста принимает вид.
(4)
Формула (4) показывает, что спектральные характеристики дискретного фильтра и аналогового прототипа не совпадают. Совпадение было бы, если бы выполнялось равенство.
(5)
Слайд 4 Поэтому можно говорить только о приближенном совпадении частотных
характеристик дискретного и аналогового фильтров. Как отмечалось на прошлой лекции,
неплохое совпадение существует при малых частотах, когда выполняется условие.
(6)
В этом случае с хорошей точностью, может выполняться равенство (5). Мы видим, что условие (6) выполняется тем лучше, чем больше частота Найквиста.
На следующих рисунках, показаны АЧХ дискретного фильтра и аналогового эллиптического фильтра 5-го порядка, вблизи полосы пропускания .
Слайд 5На первом рисунке частота Найквиста равна F = 0.25 Гц.
Слайд 6На втором рисунке частота Найквиста в три раза больше, она
равна F = 0.75 Гц .
Слайд 7 На первом рисунке отношение (6) для частоты среза
ω0 = 1 рад/с равно.
(7)
Поэтому условие (6) в полосе пропускания совсем не выполняется, отсюда плохое совпадения АЧХ дискретного и аналогового фильтров в полосе пропускания.
На втором рисунке отношение (6) для частоты среза ω0 = 1 рад/с уменьшается в три раза и равно.
(8)
Слайд 8 Поэтому условие (6) в полосе пропускания выполняется лучше,
отсюда неплохое совпадения АЧХ дискретного и аналогового фильтров в полосе
пропускания.
Совпадение АЧХ дискретного и аналогового фильтров будет еще лучше в полосе пропускания, если мы еще увеличим частоту Найквиста. Так если взять частоту Найквиста равной F = 2.5 Гц , то отношение (6) будет равно.
В этом случае, совпадение АЧХ дискретного и аналогового фильтров в полосе пропускания будет прекрасным.
Слайд 9Однако, хорошее совпадение частотных характеристик дискретного и аналогового фильтров при
малых частотах в полосе пропускания, не означает хорошего совпадения при
больших частотах, в полосе задерживания.
Как видно из формулы (6), частотная характеристика дискретного фильтра Kd (ω) обладает свойством периодичности. Так как период тангенса равен π , то период частотной характеристики дискретного фильтра будет равен 4πF .
(9)
Частотная характеристика аналогового фильтра Ka (ω) свойством периодичности не обладает. Поэтому при частотах близких к периоду 4πF АЧХ дискретного и аналогового фильтров, конечно же, будут сильно отличаться.
Слайд 10Красный цвет – АЧХ аналогового фильтра , синий цвет -
АЧХ дискретного фильтра. Частота Найквиста положена равной F = 1
Гц.
Слайд 11Геометрические свойства билинейного преобразования
Как известно из теории функций комплексного
переменного, билинейное преобразование
(10)
осуществляет конформное отображение левой полуплоскости комплексной
s- плоскости, в единичную окружность комплексной z- плоскости. На рисунке показана эта процедура.
Слайд 12 Докажем это утверждение. В преобразовании (10) выразим комплексную
переменную z через комплексную переменную s. В результате получим
преобразование.
Слайд 13
(11)
Найдем квадрат модуля комплексного числа z .
(12)
Обозначим u,
v, действительную и мнимую части комплексного числа s .
(13)
Слайд 14Для любой точки в левой полуплоскости комплексной
s- плоскости действительная часть – это
отрицательное число. Обозначим мнимую часть следующим образом.
(14)
Тогда имеем.
(15)
Подставляем (15) в выражением (12), получаем
(16)
Слайд 15В дроби (16) числитель меньше знаменателя, поэтому дробь (16) меньше
единицы. Отсюда получаем условие.
(17)
Таким образом, мы показали, что любая
точка левой полуплоскости комплексной s- плоскости, отображается в единичную окружность комплексной z- плоскости.
Если рассматривать точки комплексной s- плоскости, лежащие на мнимой оси, то действительная часть у них рана нулю. Подставим a = 0 в (16), и получим
(18)
Слайд 16 Другими словами, точки мнимой оси комплексной
s- плоскости, с
помощью билинейного преобразования отображаются в точки лежащие на окружности единичного радиуса комплексной z- плоскости.
Теперь вспомним условие устойчивости аналоговых фильтров. Аналоговый фильтр является устойчивым фильтром, если все полюсы его передаточной функции лежат в левой полуплоскости комплексной s- плоскости. Поэтому все полюсы передаточной функции дискретного фильтра, который получен из устойчивого аналогового фильтра с помощью билинейного преобразования, будут лежать внутри единичного круга комплексной z- плоскости.
Слайд 17 Далее вспоминаем, что условием устойчивости дискретного фильтра. Дискретный
фильтр является устойчивым фильтром, если все полюсы его передаточной функции
лежат внутри единичного круга комплексной z- плоскости.
Поэтому синтез с помощью билинейного преобразования по устойчивому аналоговому прототипу дает устойчивый дискретный фильтр.
Слайд 18Метод инвариантной импульсной характеристики
Метод инвариантной импульсной характеристики (impulse invariance)
синтезирует рекурсивный фильтр с помощью дискретизации импульсной характеристики аналогового фильтра.
Отличительной
особенностью этого метода является то, что в качестве импульсной характеристики дискретного фильтра используется импульсная характеристика аналогового прототипа.
Слайд 19Схему синтеза дискретного фильтра можно представить в следующем виде.
(19)
По известной передаточной функции Ha (s) аналогового фильтра восстанавливаем импульсную
характеристику h(t).
Используя известный шаг дискретизации Δt , из непрерывной частотной характеристики h(t) получаем дискретную частотную характеристику h(n) = h(nΔt).
Используя Z - преобразование находим передаточную функцию Hd (z) дискретного фильтра.
Слайд 20 На самом деле, чтобы получить частотную характеристику
Kd (ω) дискретного фильтра по аналоговому прототипу с помощью
метода инвариантной импульсной характеристики, не обязательно проделывать три шага, указанные выше.
Частотную характеристику Kd (ω) дискретного фильтра можно получить сразу из частотной характеристики Ka(ω) аналогового фильтра-прототипа. Для этого надо вспомнить формулу, связывающую спектр дискретного и непрерывного сигналов.
(20)
Слайд 21Здесь S(f) – спектр непрерывного сигнала, SD( f ) -
спектр дискретного сигнала, F - частота Найквиста. Выражение (20) можно
записать так же для циклической частоты ω.
(21)
Теперь вспомним, как определяются спектры непрерывного и дискретного сигналов.
(22)
Слайд 22 Вспомним из прошлой лекции, как выражаются частотные характеристики
аналогового и дискретного фильтров через свои частотные характеристики.
(23)
Если учесть, что импульсная характеристика дискретного фильтра для отрицательных индексов равна нулю,
то суммы и интегралы в формулах (22) (23) полностью совпадают.
Слайд 23 Если импульсную характеристику аналогового фильтра рассматривать как непрерывный
сигнал, а импульсную характеристику дискретного фильтра рассматривать как дискретный сигнал,
то частотные характеристики фильтров можно рассматривать как спектры непрерывного и дискретного сигналов соответственно.
Объединяя формулы (21), (22), (23), получаем связь между частотными характеристиками дискретного и аналогового фильтров в методе инвариантной импульсной характеристики .
(24)
Слайд 24 Частотные характеристики аналоговых фильтров, которые мы рассмотрели выше,
были нормированы на единицу. Дальше мы это тоже будем предполагать.
Для этого в формуле (24) сделаем замену.
Теперь формула (24) принимает вид.
(25)
Если мы от циклической частоты перейдем к обычной частоте, то (25) примет вид.
(26)
Слайд 25 Формулы (25), (26) являются основными в методе инвариантной
импульсной характеристики .
В качестве примера синтезируем методом импульсной
характеристики фильтр низкой частоты Чебышева 2-го порядка с частотой среза 10 кГц . Частоту Найквиста выберем небольшой 24 кГц .
На следующем рисунке, показаны АЧХ аналогового и синтезированного дискретного фильтров. Красный цвет – АЧХ аналогового фильтра , синий цвет - АЧХ
Слайд 27На следующем рисунке частота Найквиста выбрана в два раза большей
48 кГц . Как видно результат значительно улучшился.
Слайд 28Синтез нерекурсивных фильтров с использованием окон
Нерекурсивные фильтры
– это фильтры без обратной связи. Нерекурсивные фильтры являются КИХ
– фильтрами, т.е. имеют конечную импульсную характеристику. Нерекурсивные фильтры всегда устойчивы.
Так как в основном уравнении дискретного фильтра обратные связи отсутствуют, то все коэффициенты am равны нулю.
(26)
Слайд 29Поэтому передаточная функция нерекурсивного фильтра имеет следующий вид.
(27)
Вспомним, как
выражается передаточная функция через импульсную характеристику.
(28)
Сравнивая формул (27) и
(28) мы приходим к выводу, что сумма (28) является конечной суммой.
(29)
Слайд 30 Кроме того, элементы импульсной характеристики h(n) совпадают с коэффициентами
bn основного уравнения фильтра.
(30)
Число N определяет
порядок нерекурсивного фильтра. Таким образом, если порядок нерекурсивного фильтра равняется N , то его импульсная характеристика имеет N+1 отличных от нуля элементов.
Так как коэффициенты основного уравнения определяют конструкцию фильтра, то для синтеза нерекурсивного фильтра с заданной частотной характеристикой, необходимо знать нужную импульсную характеристику.
Слайд 31Таким образом, если мы имеем нерекурсивный фильтр порядка N, и
нам известна импульсная характеристика h(n) , то частотную характеристику фильтра
мы вычисляем с помощью суммы.
(31)
Такая задача называется прямой задачей.
Синтез фильтра является обратной задачей. По заданной частотной характеристике K(f) и заданному порядку фильтра N , мы пытаемся подобрать элементы импульсной характеристики h(n) , такие, чтобы подстановка их в сумму (31) дала правильную частотную характеристику.
Слайд 32 Увеличение порядка фильтра N означает увеличение электрических элементов
в конструкции фильтра. Поэтому N является всегда конечным числом, большим
или меньшим в зависимости от конструкции фильтра. Поэтому, используя конечное число элементов импульсной характеристики h(n) невозможно точно получить заданную частотную характеристику K(f) с помощью суммы (31).
Таким образом, сумма (31) может дать нам только приближенный результат. Поэтому задача различных методы синтеза фильтров состоит в выборе элементов импульсной характеристики, дающих лучший приближенный результат.
Слайд 33Метод окон является одним их таких методов синтеза нерекурсивных фильтров.
В
основе этого метода лежит прямое и обратное преобразование Фурье дискретного
сигнала.
(32)
Искомую частотную характеристику задаем в интервале от 0 до F , где F -частота Найквиста. Рассмотрим для примера идеальный ФНЧ с частотой среза f0 = F / 4.
(33)
Слайд 34На рисунке показан график спектра.
Слайд 35 Так как мы собираемся рассматривать действительные сигналы (импульсные
характеристики), то спектр, как известно, должен быть четной функцией.
(34)
Поэтому доопределим спектр (33) для отрицательных частот с помощью условия четности (34).
(35)
Слайд 36На рисунке показан график расширенного спектра.
Слайд 37Подставляем (35) в интеграл (32), интегрируем и получаем элементы дискретного
сигнала
(35)
Полученный дискретный сигнал имеет бесчисленное число
элементов, причем индекс элементов k пробегает значения от минус- бесконечности, до плюс- бесконечности. Эту последовательность мы усекаем до конечной последовательности, с числом членов N+1 .
Для сохранения симметрии дискретного сигнала, интервал изменения индекса k выберем симметричным.
(36)
Слайд 38Для удобства мы положили множитель в (35) равным.
Для построения графика
дискретного сигнала (36) положим число N = 32. Другими словами,
этот сигнал имеет 33 отсчета, которые расположены симметрично относительно нуля.
(37)
Слайд 39На следующем рисунке показаны значения усеченного сигнала.
Слайд 40 Этот усеченный дискретный сигнал подставляем в ряд Фурье
(32), который теперь является конечной суммой.
(38)
Посмотрим, какая АЧХ
получается для спектра, рассчитанного по формуле (38).
На следующем рисунке показана АЧХ в децибелах.
Слайд 41На горизонтальной оси выводится частота в единицах частоты Найквиста.
Слайд 42 Теперь нам надо связать дискретный сигнал с импульсной
характеристикой фильтра, а спектр дискретного сигнала с частотной характеристикой фильтра.
Для этого надо сравнить формулу (31), которая связывает импульсную характеристику фильтра с частотной характеристикой, и формулу (38), которая связывает дискретный сигнал со спектром дискретного сигнала.
Свяжем дискретный сигнал и импульсную характеристику следующим соотношением.
(39)
Слайд 43 Тогда частотная характеристика фильтра и спектр дискретного сигнала будут
связаны соотношение.
(40)
Таким образом, переход от характеристик дискретного
сигнала к характеристикам фильтра осуществляется с помощью формул (39), (40).
Слайд 44Весовые функции, окна
При переходе от дискретного сигнала к импульсной
характеристики фильтра, мы бесконечную последовательность усекли до конечной последовательности с
числом элементов N+1 . По сути дела, мы использовали весовую функцию (weighting function) прямоугольного окна.
Весовая функция это некоторый дискретный сигнал w(n) , в точности равный нулю за пределами заданного интервала.
(41)
Слайд 45Весовая функция прямоугольного окна имеет вид.
(42)
В рассмотренном примере, мы
полагали число M равным.
Весовая функция используется по следующему правилу.
Дискретный сигнал
и его спектр связаны преобразованием Фурье.
(43)
Слайд 46Это преобразование будем обозначать следующим символом.
(44)
У весовой функции
имеется свой Фурье образ.
(45)
Перемножаем дискретный сигнал и весовую функцию,
в результате получаем новый ограниченный дискретный сигнал
(46)
Слайд 47Далее мы находим спектр нового сигнала по формулам (43). Как
известно из теории преобразований Фурье, новый полученный спектр
будет равен свертке спектра исходного сигнала SD( f ) и спектра весовой функции W ( f ) .
(47)
Новый спектр будет, по сути дела, частотной характеристикой фильтра, которая связана с ним соотношением.
(48)
Слайд 48Импульсная функция фильтра будет находится из нового ограниченного дискретного сигнала.
(49)
Весовых функций существует довольно много. Многие весовые функции дают
гораздо лучший результат, чем прямоугольное окно. Это в первую очередь определяется характером спектра весовой функции. При небольшом навыке, по виду спектра окна можно сделать выводы о частотных свойствах синтезируемого фильтра.
Слайд 49Свойства некоторых популярных весовых функции
Прямоугольное окно
Весовая функция прямоугольного окна
(42) была рассмотрена выше. На рисунке показан спектр прямоугольного окна.
Уровень
первого бокового лепестка составляет – 15.0 дБ.
Слайд 50Треугольное окно
Отсчеты треугольного окна рассчитываются по следующей формуле, для
нечетный n.
(50)
Для четных n это будет другая формула.
(51)
Слайд 51Весовая функция треугольного окна
Слайд 52 Спектр треугольного окна. Уровень бокового лепестка составляет –26.5 дБ.
Слайд 53Результат получился лучше чем для прямоугольного окна, так уровень первого
бокового лепестка в полосе задерживания примерно равен –27 дБ.
Применим треугольное
окно для синтеза дискретного ФНЧ 32 порядка.
Слайд 54Окно Бартлетта
Окно Бартлетта, по сути дела, тоже является треугольным
окном, но рассчитывается несколько иначе. Для нечетных n формулы выглядя
следующим образом.
(52)
Для четных n формулы имеют следующий вид.
(53)
Слайд 56Уровень первого бокового лепестка, как и в случае треугольного окна,
составляет –26.5 дБ.
Слайд 57Имеются небольшие отличия, но в целом результат похож на случай
треугольного окна
Применим окно Бартлетта для синтеза дискретного ФНЧ 32
порядка.
Слайд 58Окно Ханна
Отсчеты окна Ханна рассчитываются по формуле:
(54)
На
рисунках показаны весовая функция окна Ханна, и ее спектр
Слайд 60Уровень бокового лепестка составляет –31.5 дБ.
Слайд 61Применим окно Ханна для синтеза дискретного ФНЧ 32 порядка.
Здесь
результат получился лучше, чем для треугольного окна и окна Бартлетта,
так уровень первого бокового лепестка в полосе задерживания равен –44 дБ.
Слайд 62Окно Хэмминга
Отсчеты окна Хэмминга рассчитываются по формуле
(55)
На
рисунках показаны весовая функция окна Хэмминга, и ее
спектр.
Слайд 64Уровень бокового лепестка составляет –40 дБ.
Слайд 65Применим окно Хэмминга для синтеза дискретного ФНЧ 32 порядка.
Окно
Хэмминга дает еще лучший результат, так уровень первого бокового лепестка
в полосе задерживания равен –53.6 дБ.
Слайд 66Окно Блэкмена
Отсчеты окна Блэкмена рассчитываются по формуле .
(55)
На
рисунках показаны весовая функция окна Блэкмена, и ее спектр.
Слайд 68Уровень бокового лепестка составляет –58 дБ.
Слайд 69Применим окно Блэкмена для синтеза дискретного ФНЧ 32 порядка.
Окно
Блэкмена дает лучший результат чем окно Хэмминга, так уровень первого
бокового лепестка в полосе задерживания равен –75.3 дБ. Правда окно Хэмминга дает более узкую переходную полосу между полосой пропускания и полосой задерживания.
Слайд 70Окно Кайзера
Отсчеты окна Кайзера рассчитываются по формуле :
(56)
Здесь
I0 (z) - модифицированная функция Бесселя первого рода нулевого порядка.
Параметр β может меняться от 0 до ∞, но на практике используются значения от 4 до 9.
На рисунках показаны весовая функция окна Кайзера, и ее спектр для β=9 .
Слайд 72Уровень бокового лепестка составляет –66 дБ.
Слайд 73Применим окно Кайзера для синтеза дискретного ФНЧ 32 порядка. Результат
показан на следующем рисунке для β=9.
Окно Кайзера дает лучший результат
чем окно Блэкмена, так уровень первого бокового лепестка в полосе задерживания равен –90.5 дБ.
Слайд 74Окно Чебышева
Для окна Чебышева все боковые лепестки
имеют одинаковый уровень, заданный при расчете окна. Отчеты весовой функции
окна Чебышева рассчитываются путем вычисления обратного преобразования Фурье от его частотной характеристики, которая имеет вид.
(57)
Здесь β - степень подавления боковых лепестков в децибелах.
На рисунках показаны весовая функция окна Чебышева, и ее спектр для β=-40дБ.
Слайд 76На рисунке видно, что все боковые лепестки имеют один уровень
–40 дБ.
Слайд 77Применим окно Чебышева для синтеза дискретного ФНЧ 32 порядка. Результат
показан на следующем рисунке для β=− 40дБ.
Здесь уровень первого бокового
лепестка в полосе задерживания равен –51.0 дБ