Разделы презентаций


Наследственность растений

Содержание

Наследственность и наследованиеНаследственность в широком смысле слова − это свойство организма воспроизводить себе подобных; преемственность в поколениях.Наследование отражает наличие процесса передачи генетической информации от одного клеточного или организменного поколения к другому,

Слайды и текст этой презентации

Слайд 1Лекция 2 “Учение о наследственности растений”
План:
Понятие наследственности и наследования
-

Эволюционное учение Ч. Дарвина и виды наследственности по К.А. Тимирязеву
-

Законы наследственности Г. Менделя
Моногибридное, дигибридное и полигибридное скрещивание
Лекция 2 “Учение о наследственности растений”План: Понятие наследственности и наследования- Эволюционное учение Ч. Дарвина и виды наследственности

Слайд 2Наследственность и наследование
Наследственность в широком смысле слова − это свойство

организма воспроизводить себе подобных; преемственность в поколениях.
Наследование отражает наличие процесса

передачи генетической информации от одного клеточного или организменного поколения к другому, т.е. передачи системы контроля развития признаков организма.
Наследуемость − генотипическая обусловленность изменчивости признака для группы организмов..
Наследственность и наследованиеНаследственность в широком смысле слова − это свойство организма воспроизводить себе подобных; преемственность в поколениях.Наследование

Слайд 3Наследственность и наследование
Наследственность в узком смысле –
свойство генов направлять по

определенному типу построение специфической белковой молекулы, развитие признака и план

строения организма.
Наследование – отражение закономерности процесса передачи наследственных свойств от одного поколения к другому
Наследственность и наследованиеНаследственность в узком смысле –свойство генов направлять по определенному типу построение специфической белковой молекулы, развитие

Слайд 4Эволюционное учение Ч. Дарвина
Впервые вопросы наследственности и изменчивости были подняты

и обоснованы Ч. Дарвином.
Он писал, что всякому организму свойственна

изменчивость, но только те вариации (т.е. изменения), которые передаются по наследству, приносят пользу человеку.
Главная заслуга Ч. Дарвина в том, что он раскрыл движущие силы эволюции.
Движущей силой эволюции по Дарвину является наследственная изменчивость и отбор.
Эволюционное учение Ч. ДарвинаВпервые вопросы наследственности и изменчивости были подняты и обоснованы Ч. Дарвином. Он писал, что

Слайд 5Виды наследственности по К.А. Тимирязеву
Под наследственностью К.А. Тимирязев понимал сохранение

и передачу сходного как во внешнем строении, так и в

физико-химических особенностях организмов
Наследственность проявляется как в сохранении неизменного, так в сохранении изменившегося, только последнее наблюдается далеко не во всех случаях
Признаки и свойства организма формируются в процессе индивидуального развития, которое в свою очередь определяется наследственностью.
Виды наследственности  по К.А. ТимирязевуПод наследственностью К.А. Тимирязев понимал сохранение и передачу сходного как во внешнем

Слайд 6Филогенез
Признаки организмов сформировались в процессе длительного филогенетического развития данного вида,

и порождение одним видом другого в природе не существует.
Филогенез (или

эволюция вида) – развитие любой группы родственных друг другу организмов, в процессе которого виды, возникшие из ранее существовавших, располагаются в ряду последовательно.
ФилогенезПризнаки организмов сформировались в процессе длительного филогенетического развития данного вида, и порождение одним видом другого в природе

Слайд 7Простая наследственность
К.А. Тимирязев различал простую и сложную наследственность:
Простая наследственность

имеет место при вегетативном размножении растений, когда дочерняя особь воспроизводится

из какой-нибудь части материнского растения, например черенка, почки, листа. В этом случае наследование признаков материнского растения бывает, как правило, полное
Простая наследственностьК.А. Тимирязев различал простую и сложную наследственность: Простая наследственность имеет место при вегетативном размножении растений, когда

Слайд 8Сложная наследственность
Сложная наследственность наблюдается, при половом размножении, когда дочерние особи,

возникшие из семян, получившихся из зиготы в результате слияния мужских

и женских гамет, должны сочетать признаки обоих родителей.
Сложная наследственность подразделяется на смешанную, слитную и взаимоисключающую.
Сложная наследственностьСложная наследственность наблюдается, при половом размножении, когда дочерние особи, возникшие из семян, получившихся из зиготы в

Слайд 9Виды сложной наследственности
смешанная наследственность - у потомства можно обнаружить признаки

одного и другого родителя
слитная наследственность- потомство имеет промежуточное строение.
взаимоисключающая

наследственность – у потомства проявляются признаки только одного из родителей
Атавизм – проявление признаков отдаленных предков
Виды сложной наследственностисмешанная наследственность - у потомства можно обнаружить признаки одного и другого родителя слитная наследственность- потомство

Слайд 10Законы наследственности Г. Менделя
У гибридов первого поколение из каждой

пары контрастирующих признаков развивается только один, а второй не проявляется,

как бы исчезает. Проявляющийся признак был назван доминантным, а подавляемый рецессивным. Это явление получило название доминирования, а позднее − первого закона Менделя, или закон единообразия гибридов первого поколения.

Первый закон

Законы наследственности  Г. Менделя У гибридов первого поколение из каждой пары контрастирующих признаков развивается только один,

Слайд 11Второй закон
При самоопылении во втором гибридном поколении возникают особи как

с доминантными, так и с рецессивными признаками. Причем отношение первых

ко вторым в среднем равно 3:1. Это явление было названо законом расщепления или вторым законом Менделя
Второй законПри самоопылении во втором гибридном поколении возникают особи как с доминантными, так и с рецессивными признаками.

Слайд 12При последующем самоопылении гибридов растения с рецессивными признаками дают константное

потомство, устойчиво сохраняющее признак родителя, а среди растений с доминантным

признаком 2/3 вновь расщепляются в соотношении 1:3 и лишь 1/3 остается константной. Отсюда следует, что хотя все растения с доминантным признаком внешне были однородными, содержащиеся в них наследственные задатки оказались различными
При последующем самоопылении гибридов растения с рецессивными признаками дают константное потомство, устойчиво сохраняющее признак родителя, а среди

Слайд 13Таким образом, анализ потомства во втором гибридном поколении выявил следующие

два типа расщепления: а) по внешнему проявлению признака, которое выражается

отношением 3:1; б) по наследственным задаткам, выраженным отношением 1:2:1.
Позже первый тип расщепления был назван расщеплением по фенотипу, т.е. по внешнему расщеплению признака, второй − по генотипу, т.е. по наследственным задаткам
Таким образом, анализ потомства во втором гибридном поколении выявил следующие два типа расщепления: а) по внешнему проявлению

Слайд 14Третий закон
На основании одновременного анализа наследования нескольких пар контрастирующих признаков

у скрещиваемых горохов (цветки белые и красные, горошины желтые и

зеленые, морщинистые и гладкие) Мендель установил, что каждая пара признаков ведет себя независимо от другой.
Третий законНа основании одновременного анализа наследования нескольких пар контрастирующих признаков у скрещиваемых горохов (цветки белые и красные,

Слайд 15Независимое расщепление и случайное комбинирование признаков в тех случаях, когда

родители разняться по двум и более парам контрастирующих наследственных особенностей,

было названо третьим законом Менделя.


Независимое расщепление и случайное комбинирование признаков в тех случаях, когда родители разняться по двум и более парам

Слайд 16Закономерности наследования
Мендель установил что:
− признаки организма определяются отдельными наследственными факторами,

которые передаются через половые клетки;
− отдельные признаки организмов при скрещивании

не исчезают, не разбавляются и не смешиваются, а сохраняются в потомстве в том же виде, в каком они были у родительских организмов
Открытие этих явлений относится к закономерностям наследования.
Закономерности наследованияМендель установил что:− признаки организма определяются отдельными наследственными факторами, которые передаются через половые клетки;− отдельные признаки

Слайд 17Единица наследственности
Единицей наследственности принято считать ген. Ген (греч. genos —

род, происхождение) — дискретный наследственный фактор, как его понимал Г.

Мендель.
В дальнейшем ген определили как функционально неделимую единицу наследственного материала;
структурно — это участок молекулы ДНК (у некоторых видов РНК) или последовательность нуклеотидов, которой может быть приписана определенная функция в организме
Термин «ген» был предложен В. Иогансеном в 1909 году
Единица наследственностиЕдиницей наследственности принято считать ген. Ген (греч. genos — род, происхождение) — дискретный наследственный фактор, как

Слайд 18Генотип
Различают генотип и фенотип особи. Совокупность всех наследственных задатков данной

клетки или организма, включая аллели генов представляет собой генотип (ген

и греч. typos — отпечаток),
В современном понятии генотип — это вся генетическая информация организма,
ГенотипРазличают генотип и фенотип особи. Совокупность всех наследственных задатков данной клетки или организма, включая аллели генов представляет

Слайд 19Фенотип
Фенотип — это наблюдаемые признаки особи, проявляющиеся в результате реализации

генотипа в определенных условиях среды.

ФенотипФенотип — это наблюдаемые признаки особи, проявляющиеся в результате реализации генотипа в определенных условиях среды.

Слайд 20Гибридологический метод
Система скрещиваний, позволяющая проследить закономерности наследования и изменения признаков

в ряду поколений.
Особенности метода:
Целенаправленный подбор родителей, различающихся по одной, двум,

трем и т.д парам контрастирующих признаков;
Учет наследования признаков по каждой паре в каждом поколении;
Индивидуальная оценка потомства от каждого родителя в ряду поколений.
Гибридологический методСистема скрещиваний, позволяющая проследить закономерности наследования и изменения признаков в ряду поколений.Особенности метода:Целенаправленный подбор родителей, различающихся

Слайд 21Гибридологический анализ
Обозначения
Родителей обозначают буквой Р (лат. parents —

родители),
женский пол — знаком ♀ (зеркало Венеры), мужской —

♂ (копье Марса),
скрещивание — х,
гибридная популяция — буквой F (лат. filialis — сыновний) с соответствующими цифровыми индексами (F1 — первое, F2 — второе, F3 — третье поколение и т. д.).
Гибридологический анализОбозначения Родителей обозначают буквой Р (лат. parents — родители), женский пол — знаком ♀ (зеркало Венеры),

Слайд 22Моногибридное скрещивание
Моногибридным называется скрещивание, при котором анализируется наследование одной пары

альтернативных (взаимоисключающих) признаков

Моногибридное скрещиваниеМоногибридным называется скрещивание, при котором анализируется наследование одной пары альтернативных (взаимоисключающих) признаков

Слайд 23
Каждый организм один задаток (ген) получает от материнского организма, а

другой – от отцовского, следовательно, получаемые гены являются парами.
Явление

парности генов В.Иогансен в 1926 назвал аллелизмом;
каждый ген пары – аллелью.
Например, желтая и зеленая окраска семян гороха являются двумя аллелями (соответственно доминантной аллелью и рецессивной аллелью) одного гена.
Место расположения гена на хромосоме – локус.
Каждый организм один задаток (ген) получает от материнского организма, а другой – от отцовского, следовательно, получаемые гены

Слайд 24Полное доминирование

Полное доминирование

Слайд 25Неполное доминирование

Неполное доминирование

Слайд 26
В настоящее время известно, что существуют гены, имеющие не две,

а большее количество аллелей.
Наличие у гена большого количества аллелей

называют множественным аллелизмом.
Множественный аллелизм является следствием возникновения нескольких мутаций одного и того же гена.
В настоящее время известно, что существуют гены, имеющие не две, а большее количество аллелей. Наличие у гена

Слайд 27
Организмы, имеющие одинаковые аллели одного гена, называются гомозиготными.
Они могут

быть гомозиготными по доминантным (АА) или по рецессивным (аа) генам.


Организмы, имеющие разные аллели одного гена, называются гетерозиготными (Аа).
Организмы, имеющие одинаковые аллели одного гена, называются гомозиготными. Они могут быть гомозиготными по доминантным (АА) или по

Слайд 28
Совокупность всех генов организма называют генотипом.
Совокупность всех признаков организма называют

фенотипом. Доминантный признак всегда проявляется фенотипически.
В соматических клетках каждый ген

представлен двумя аллелями гомологичной пары.
Каждая гамета (половая клетка) содержит одну аллель из каждой аллельной пары генов.
Совокупность всех генов организма называют генотипом.Совокупность всех признаков организма называют фенотипом. Доминантный признак всегда проявляется фенотипически.В соматических

Слайд 29
Число типов гамет равно 2n, где n – число генов,

находящихся в гетерозиготном состоянии. Например,
особь с генотипом АаВВСС образует

2 типа гамет: АВС и аВС,
с генотипом АаВВСс – 4 типа (22 = 4),
а с генотипом АаВвСс – 8 типов (23 = 8).

Число типов гамет равно 2n, где n – число генов, находящихся в гетерозиготном состоянии. Например, особь с

Слайд 30Дигибридное скрещивание
Дигибридным называют скрещивание, при котором анализируется наследование двух пар

альтернативных признаков.
Анализ количественных соотношений групп гибридов F2, имеющих определенное сочетание

признаков, привел к заключению:
расщепление по фенотипу при скрещивании дигетерозигот происходит в соотношении (3:1) х (3:1) = 9:3:3:1 :
Дигибридное скрещиваниеДигибридным называют скрещивание, при котором анализируется наследование двух пар альтернативных признаков.Анализ количественных соотношений групп гибридов F2,

Слайд 31Дигибридное скрещивание
9/16 растений F2 обладали доминантными признаками (гладкие желтые семена);
3/16

были желтыми (доминантный) и морщинистыми (рецессивный);
3/16 были зелеными и (рецессивный)

и гладкими (доминантный);
1/16 растений F2 обладали обоими рецессивными признаками (морщинистые семена зеленого цвета).
Дигибридное скрещивание9/16 растений F2 обладали доминантными признаками (гладкие желтые семена);3/16 были желтыми (доминантный) и морщинистыми (рецессивный);3/16 были

Слайд 32Дигибридное скрещивание

Дигибридное скрещивание

Слайд 33Распределение по генотипу дает 9 классов в следующих числовых соотношениях:


(1:2:1) × (1:2:1) = 1:2:1:2:4:2:1:2:1, или 4:2:2:2:2:1:1:1:1.

Распределение по генотипу дает

9 классов в следующих числовых соотношениях:
(1:2:1) × (1:2:1) = 1:2:1:2:4:2:1:2:1, или 4:2:2:2:2:1:1:1:1.

Распределение по генотипу дает 9 классов в следующих числовых соотношениях: (1:2:1) × (1:2:1) = 1:2:1:2:4:2:1:2:1, или 4:2:2:2:2:1:1:1:1.Распределение

Слайд 34Анализирующее скрещивание
Скрещивание гибридов или особи с неизвестным генотипом с особью,

гомозиготной по рецессивному признаку
Потомство расщепляется 1:1

Анализирующее скрещиваниеСкрещивание гибридов или особи с неизвестным генотипом с особью, гомозиготной по рецессивному признакуПотомство расщепляется 1:1

Слайд 35Полигибридное скрещивание
Скрещивания особей, различающихся по трем и более парам аллельных

признаков, называются полигибридными. Они дают сложную картину расщепления по сравнению

с дигибридными скрещиваниями, но подчиняются тем же закономерностям наследования.
Число возможных комбинаций гамет и количество классов по фенотипу и генотипу можно определить, пользуясь таблицей.
Полигибридное скрещиваниеСкрещивания особей, различающихся по трем и более парам аллельных признаков, называются полигибридными. Они дают сложную картину

Слайд 36Количественные закономерности образования гамет расщепления гибридов при различных типах скрещивания

Количественные закономерности образования гамет расщепления гибридов при различных типах скрещивания

Слайд 37Лекция 1 “Учение о наследственности растений”
План:
Понятие наследственности и наследования
-

Законы наследственности Г. Менделя
Моногибридное, дигибридное и полигибридное скрещивание

Лекция 1 “Учение о наследственности растений”План: Понятие наследственности и наследования- Законы наследственности Г. Менделя Моногибридное, дигибридное и

Слайд 38Наследственность и наследование
Наследственность в широком смысле слова − это свойство

организма воспроизводить себе подобных; преемственность в поколениях.
Наследование отражает наличие процесса

передачи генетической информации от одного клеточного или организменного поколения к другому, т.е. передачи системы контроля развития признаков организма.
Наследуемость − генотипическая обусловленность изменчивости признака для группы организмов
Наследственность и наследованиеНаследственность в широком смысле слова − это свойство организма воспроизводить себе подобных; преемственность в поколениях.Наследование

Слайд 39Законы наследственности Г. Менделя
Первый закон
У гибридов первого поколение из

каждой пары контрастирующих признаков развивается только один, а второй не

проявляется, как бы исчезает. Проявляющийся признак был назван доминантным, а подавляемый рецессивным. Это явление получило название доминирования, а позднее − первого закона Менделя, или закон единообразия гибридов первого поколения.

Законы наследственности  Г. МенделяПервый закон У гибридов первого поколение из каждой пары контрастирующих признаков развивается только

Слайд 40Второй закон
При самоопылении во втором гибридном поколении возникают особи как

с доминантными, так и с рецессивными признаками. Причем отношение первых

ко вторым в среднем равно 3:1. Это явление было названо законом расщепления или вторым законом Менделя
Второй законПри самоопылении во втором гибридном поколении возникают особи как с доминантными, так и с рецессивными признаками.

Слайд 41
При последующем самоопылении гибридов растения с рецессивными признаками дают константное

потомство, устойчиво сохраняющее признак родителя, а среди растений с доминантным

признаком 2/3 вновь расщепляются в соотношении 1:3 и лишь 1/3 остается константной. Отсюда следует, что хотя все растения с доминантным признаком внешне были однородными, содержащиеся в них наследственные задатки оказались различными
При последующем самоопылении гибридов растения с рецессивными признаками дают константное потомство, устойчиво сохраняющее признак родителя, а среди

Слайд 42
Таким образом, анализ потомства во втором гибридном поколении выявил следующие

два типа расщепления: а) по внешнему проявлению признака, которое выражается

отношением 3:1; б) по наследственным задаткам, выраженным отношением 1:2:1.
Позже первый тип расщепления был назван расщеплением по фенотипу, т.е. по внешнему расщеплению признака, второй − по генотипу, т.е. по наследственным задаткам
Таким образом, анализ потомства во втором гибридном поколении выявил следующие два типа расщепления: а) по внешнему проявлению

Слайд 43Третий закон
На основании одновременного анализа наследования нескольких пар контрастирующих признаков

у скрещиваемых горохов (цветки белые и красные, горошины желтые и

зеленые, морщинистые и гладкие) Мендель установил, что каждая пара признаков ведет себя независимо от другой.
Третий законНа основании одновременного анализа наследования нескольких пар контрастирующих признаков у скрещиваемых горохов (цветки белые и красные,

Слайд 44
Независимое расщепление и случайное комбинирование признаков в тех случаях, когда

родители разняться по двум и более парам контрастирующих наследственных особенностей,

было названо третьим законом Менделя.


Независимое расщепление и случайное комбинирование признаков в тех случаях, когда родители разняться по двум и более парам

Слайд 45Закономерности наследования
Мендель установил что:
− признаки организма определяются отдельными наследственными факторами,

которые передаются через половые клетки;
− отдельные признаки организмов при скрещивании

не исчезают, не разбавляются и не смешиваются, а сохраняются в потомстве в том же виде, в каком они были у родительских организмов
Открытие этих явлений относится к закономерностям наследования.
Закономерности наследованияМендель установил что:− признаки организма определяются отдельными наследственными факторами, которые передаются через половые клетки;− отдельные признаки

Слайд 46Единица наследственности
Единицей наследственности принято считать ген. Ген (греч. genos —

род, происхождение) — дискретный наследственный фактор, как его понимал Г.

Мендель.
В дальнейшем ген определили как функционально неделимую единицу наследственного материала;
структурно — это участок молекулы ДНК (у некоторых видов РНК) или последовательность нуклеотидов, которой может быть приписана определенная функция в организме
Термин «ген» был предложен В. Иогансеном в 1909 году
Единица наследственностиЕдиницей наследственности принято считать ген. Ген (греч. genos — род, происхождение) — дискретный наследственный фактор, как

Слайд 47Генотип
Различают генотип и фенотип особи. Совокупность всех наследственных задатков данной

клетки или организма, включая аллели генов представляет собой генотип (ген

и греч. typos — отпечаток),
В современном понятии генотип — это вся генетическая информация организма,
ГенотипРазличают генотип и фенотип особи. Совокупность всех наследственных задатков данной клетки или организма, включая аллели генов представляет

Слайд 48Фенотип
Фенотип — это наблюдаемые признаки особи, проявляющиеся в результате реализации

генотипа в определенных условиях среды.

ФенотипФенотип — это наблюдаемые признаки особи, проявляющиеся в результате реализации генотипа в определенных условиях среды.

Слайд 49Гибридологический анализ
Система скрещиваний, позволяющая проследить закономерности наследования и изменения признаков

в ряду поколений.
Обозначения
Родителей обозначают буквой Р (лат. parents

— родители),
женский пол — знаком ♀ (зеркало Венеры), мужской — ♂ (копье Марса),
скрещивание — х,
гибридная популяция — буквой F (лат. filialis — сыновний) с соответствующими цифровыми индексами (F1 — первое, F2 — второе, F3 — третье поколение и т. д.).

Гибридологический анализСистема скрещиваний, позволяющая проследить закономерности наследования и изменения признаков в ряду поколений.Обозначения Родителей обозначают буквой Р

Слайд 50Моногибридное скрещивание
Моногибридным называется скрещивание, при котором анализируется наследование одной пары

альтернативных (взаимоисключающих) признаков

Моногибридное скрещиваниеМоногибридным называется скрещивание, при котором анализируется наследование одной пары альтернативных (взаимоисключающих) признаков

Слайд 51
Каждый организм один задаток (ген) получает от материнского организма, а

другой – от отцовского, следовательно, получаемые гены являются парами.
Явление

парности генов В.Иогансен в 1926 назвал аллелизмом;
каждый ген пары – аллелью.
Например, желтая и зеленая окраска семян гороха являются двумя аллелями (соответственно доминантной аллелью и рецессивной аллелью) одного гена.
Место расположения гена на хромосоме – локус.
Каждый организм один задаток (ген) получает от материнского организма, а другой – от отцовского, следовательно, получаемые гены

Слайд 52
Организмы, имеющие одинаковые аллели одного гена, называются гомозиготными.
Они могут

быть гомозиготными по доминантным (АА) или по рецессивным (аа) генам.


Организмы, имеющие разные аллели одного гена, называются гетерозиготными (Аа).

Организмы, имеющие одинаковые аллели одного гена, называются гомозиготными. Они могут быть гомозиготными по доминантным (АА) или по

Слайд 53Полное доминирование

Полное доминирование

Слайд 54Неполное доминирование

Неполное доминирование

Слайд 55Дигибридное скрещивание
Дигибридным называют скрещивание, при котором анализируется наследование двух пар

альтернативных признаков.
Анализ количественных соотношений групп гибридов F2, имеющих определенное сочетание

признаков, привел к заключению:
расщепление по фенотипу при скрещивании дигетерозигот происходит в соотношении (3:1) х (3:1) = 9:3:3:1 :

Дигибридное скрещиваниеДигибридным называют скрещивание, при котором анализируется наследование двух пар альтернативных признаков.Анализ количественных соотношений групп гибридов F2,

Слайд 56
9/16 растений F2 обладали доминантными признаками (гладкие желтые семена);
3/16 были

желтыми (доминантный) и морщинистыми (рецессивный);
3/16 были зелеными и (рецессивный) и

гладкими (доминантный);
1/16 растений F2 обладали обоими рецессивными признаками (морщинистые семена зеленого цвета).

9/16 растений F2 обладали доминантными признаками (гладкие желтые семена);3/16 были желтыми (доминантный) и морщинистыми (рецессивный);3/16 были зелеными

Слайд 58Анализирующее скрещивание
Скрещивание гибридов или особи с неизвестным генотипом с особью,

гомозиготной по рецессивному признаку
Потомство расщепляется 1:1

Анализирующее скрещиваниеСкрещивание гибридов или особи с неизвестным генотипом с особью, гомозиготной по рецессивному признакуПотомство расщепляется 1:1

Слайд 59Полигибридное скрещивание
Скрещивания особей, различающихся по трем и более парам аллельных

признаков, называются полигибридными. Они дают сложную картину расщепления по сравнению

с дигибридными скрещиваниями, но подчиняются тем же закономерностям наследования.

Полигибридное скрещиваниеСкрещивания особей, различающихся по трем и более парам аллельных признаков, называются полигибридными. Они дают сложную картину

Слайд 60Преемственность наследственности в ряду поколений
Вегетативное размножение и значение митоза в

передаче наследственной информации
Половое размножение и значение мейоза в передаче наследственной

информации
Преемственность наследственности в ряду поколенийВегетативное размножение и значение митоза в передаче наследственной информацииПоловое размножение и значение мейоза

Слайд 61Вегетативное размножение
основе размножения всех живых организмов лежит универсальный процесс –

деление клетки.
Виды вегетативного размножения растений – прививка, корневыми отпрысками, укоренение

черенков, отводками, отдельными почками, отдельными клетками и тканями.
При вегетативном размножении из группы соматических клеток путем многократного деления воспроизводится целый организм, который полностью походит на исходную особь

Вегетативное размножениеоснове размножения всех живых организмов лежит универсальный процесс – деление клетки.Виды вегетативного размножения растений – прививка,

Слайд 62Митоз
В соматических клетках любого организма содержится полный набор хромосом, свойственный

данному виду и включающий всю наследственную программу
Передача наследственности из поколения

в поколение без изменения передается при вегетативном размножении благодаря клеточному делению, главным в котором является митоз – непрямое деление клеточного ядра

МитозВ соматических клетках любого организма содержится полный набор хромосом, свойственный данному виду и включающий всю наследственную программуПередача

Слайд 63Стадии митоза
Митоз включает четыре стадии – профазу, метафазу, анафазу и

телофазу
Между двумя последовательными делениями ядро находится в стадии интерфазы
Главный процесс

и интерфазе – удвоение молекул ДНК или редупликация ДНК
Стадии митозаМитоз включает четыре стадии – профазу, метафазу, анафазу и телофазуМежду двумя последовательными делениями ядро находится в

Слайд 64Репликация ДНК

Репликация ДНК

Слайд 65Результат митоза
В результате митоза при росте организма вновь образующиеся соматические

клетки получают полный набор хромосом, содержащий наследственную программу.
При вегетативном размножении

из одной клетки с полным набором хромосом возникают две клетки с таким же набором хромосом
Благодаря этому сохраняется полная преемственность наследственности при вегетативном размножении

Результат митозаВ результате митоза при росте организма вновь образующиеся соматические клетки получают полный набор хромосом, содержащий наследственную

Слайд 66Схема митоза

Схема митоза

Слайд 67Половое размножение
При половом размножении организмы на определенном этапе своего развития

формируют специальные мужские и женские половые клетки, которые объединяясь образуют

исходную клетку - зиготу. Из зиготы в процессе клеточного деления формируется новый организм
Преимущества полового размножения – оно обеспечивает большую численность потомства; увеличивает наследственную изменчивость

Половое размножениеПри половом размножении организмы на определенном этапе своего развития формируют специальные мужские и женские половые клетки,

Слайд 68
Половой процесс размножения предусматривает образование мужских и женских половых клеток.

Это специализированные клетки, которые содержат а два раза меньше хромосом,

т.е. гаплоидный набор.
В формировании половых клеток существенная роль принадлежит механизму, обеспечивающему уменьшение числа хромосом в этих клетках. Он заключается в особом типе клеточного деления, который называется мейозом.

Половой процесс размножения предусматривает образование мужских и женских половых клеток. Это специализированные клетки, которые содержат а два

Слайд 69Мейоз
Мейоз включает два последовательных деления ядра.
Первое заключается в уменьшении числа

хромосом вдвое и называется редукционным
Второе сходно с митозом и называется

эквационным

МейозМейоз включает два последовательных деления ядра.Первое заключается в уменьшении числа хромосом вдвое и называется редукционнымВторое сходно с

Слайд 70Стадии мейоза
В профазе I гомологичные хромосомы притягиваются друг к другу

и соединяются по всей длине, образуя биваленты. Этот процесс называется

конъюгацией гомологичных хромосом. Каждый бивалент состоит из четырех хроматид.
Очень часто несестринские хроматиды перекрещиваются между собой. В местах их перекреста могут происходить обмены генами. Это явление носит название кроссинговера.

Стадии мейозаВ профазе I гомологичные хромосомы притягиваются друг к другу и соединяются по всей длине, образуя биваленты.

Слайд 71
В метафазе I видны хромосомы, образующие веретено деления; с полюса

клетки можно рассмотреть биваленты и сосчитать их число. Гомологичные хромосомы

своими центромерами направлены к противоположным полюсам клетки
В метафазе I видны хромосомы, образующие веретено деления; с полюса клетки можно рассмотреть биваленты и сосчитать их

Слайд 72
В стадии анафазы I хромосомы расходятся к противоположным полюсам, в

результате чего их число в будущих дочерних ядрах уменьшается вдвое.

При этом очень важно , что отцовская и материнская хромосомы каждой гомологичной пары могут отходить к любому из двух полюсов, подчиняясь случаю. Каждая пара ведет себя независимо от других пар хромосом
Каждая хромосома остается двойной: сестринские хроматиды все это время держатся вместе благодаря общей центромере

В стадии анафазы I хромосомы расходятся к противоположным полюсам, в результате чего их число в будущих дочерних

Слайд 73
В телофазе I внутри клетки видны два ядра, более мелкие

по размеру, чем исходные с гаплоидным набором хромосом
В результате первого

редукционного деления образуются два ядра с половинным гаплоидным числом хромосом

В телофазе I внутри клетки видны два ядра, более мелкие по размеру, чем исходные с гаплоидным набором

Слайд 74
При втором делении каждое дочернее ядро вновь делится, но уже

митотически, с сохранением во вновь образовавшихся дочерних ядрах гаплоидных наборов

хромосом
В итоге мейоза из одной материнской клетки с диплоидным набором хромосом образуются четыре клетки с половинным (гаплоидным) набором хромосом
При втором делении каждое дочернее ядро вновь делится, но уже митотически, с сохранением во вновь образовавшихся дочерних

Слайд 75Схема мейоза

Схема мейоза

Слайд 76Закономерности наследования
Взаимодействие аллельных генов.
Взаимодействие неаллеламорфных генов.
Сцепленное наследование. Кроссинговер

Закономерности наследованияВзаимодействие аллельных генов.Взаимодействие неаллеламорфных генов.Сцепленное наследование. Кроссинговер

Слайд 77Основные положения
Наследственные признаки обусловлены генами.
Гены – отдельные участки ДНК хромосом
Локус

– место расположения гена на хромосоме
В каждой паре гомологичных хромосом

содержатся два родственных гена, которые отвечают за развитие одного признака
Локусы родственных генов расположены в одинаковых местах гомологичных хромосом

Основные положенияНаследственные признаки обусловлены генами.Гены – отдельные участки ДНК хромосомЛокус – место расположения гена на хромосомеВ каждой

Слайд 78
Аллель – это один ген из пары находящийся в сходном

локусе и контролирующий развитие альтернативных признаков. Аллелем называется еще форма

состояния гена
Взаимодействие генов, находящихся в одинаковых локусах гомологичных хромосом, называется аллельным или аллеломорфным
Гомозиготный организм – имеющий в одном и том же локусе гомологичных хромосом одинаковые по характеру действия гены (АА, аа, ВВ, вв)
Гетерозиготный организм – имеющий в одном и том же локусе гомологичных хромосом разные по характеру действия гены (аллели) (Аа, Вв)

Аллель – это один ген из пары находящийся в сходном локусе и контролирующий развитие альтернативных признаков. Аллелем

Слайд 79Формы взаимодействия аллельных генов
Полное доминирование
Неполное доминирование
Кодоминирование

Формы взаимодействия аллельных геновПолное доминированиеНеполное доминированиеКодоминирование

Слайд 80Полное доминирование
Наблюдается когда закономерности наследования подчиняются законам Менделя, когда в

фенотипе гетерозигот присутствует продукт одного гена
При перекрестном опылении двух гомозиготных

особей с генами АА и аа в первом гибридном поколении все растения по фенотипу будут одинаковы, а по генотипу будут гетерозиготными т.е. иметь гены Аа.

Полное доминированиеНаблюдается когда закономерности наследования подчиняются законам Менделя, когда в фенотипе гетерозигот присутствует продукт одного генаПри перекрестном

Слайд 81Неполное доминирование
Фенотип гетерозигот имеет среднее значение.
При скрещивании белых и красных

цветков у львиного зева получаем розовые цветки.
Во втором гибридном

поколении идет расщепление: одно красноцветковое растение, два с розовыми цветками и одно с белыми цветками.
При этом наблюдается полное соответствие между фенотипом и генотипом – гомозиготы АА имеют красные цветки, гетерозиготы Аа – розовые и гомозиготы аа - белые

Неполное доминированиеФенотип гетерозигот имеет среднее значение.При скрещивании белых и красных цветков у львиного зева получаем розовые цветки.

Слайд 82Кодоминирование
Взаимодействие аллельных генов, при котором у гетерозигот в фенотипе присутствует

продукт обоих генов
Примером кодоминирования является наследования у человека группы крови

систем АВО. Группа крови контролируется серией множественных аллелей одного гена. Три аллели формируют шесть генотипов ОО – первая, АА или АО – вторая, ВВ или ВО – третья, АВ – четвертая группа крови.

КодоминированиеВзаимодействие аллельных генов, при котором у гетерозигот в фенотипе присутствует продукт обоих геновПримером кодоминирования является наследования у

Слайд 83Взаимодействие неаллельных генов
Гены расположенные в разных локусах и ответственные за

проявление одного гена называются неаллельными
Плейотропия – множественное действие гена, когда

один ген ответственен за ряд фенотипических эффектов.
Полигенная детерминация – совместное действие нескольких генов на один признак.
Типы взаимодействия: комплементарность, эпистаз , полимерия, модификация
Взаимодействие неаллельных геновГены расположенные в разных локусах и ответственные за проявление одного гена называются неаллельнымиПлейотропия – множественное

Слайд 84Комплементарность
Комплементарность. Комплементарные гены – обуславливающие при совместном сочетании новое фенотипическое

проявление признака.
Например – ген А обуславливает развитие голубой окраски оперения

волнистых попугайчиков, ген В – желтой, а попугайчики с генотипом А_В_ - имеет зеленую окраску, а с генотипом аавв – белую.
КомплементарностьКомплементарность. Комплементарные гены – обуславливающие при совместном сочетании новое фенотипическое проявление признака.Например – ген А обуславливает развитие

Слайд 85Эпистаз
Эпистатическим называют такое взаимодействие неаллельных генов, при котором один из

них подавляет действие другого.
Ген, подавляющий действие другого неаллельного гена, называется

супрессором или ингибитором, и обозначается I или S. Подавляемый ген называется гипостатичным
ЭпистазЭпистатическим называют такое взаимодействие неаллельных генов, при котором один из них подавляет действие другого.Ген, подавляющий действие другого

Слайд 86
Например – у некоторых пород кур наличие доминантного эпистатического гена

подавляет развитие окраски оперения, при его отсутствии куры окрашены

Например – у некоторых пород кур наличие доминантного эпистатического гена подавляет развитие окраски оперения, при его отсутствии

Слайд 87Полимерия
Взаимодействие неаллельных генов, однозначно влияющих на развитие одного и того

же признака
Такие гены называются полимернами или множественными и обозначаются одинаковыми

буквами с соответствующими индексом (А1,А2,А3)
Чаще всего полимерные гены контролируют количественные признаки (высота, масса, и т.д.)

ПолимерияВзаимодействие неаллельных генов, однозначно влияющих на развитие одного и того же признакаТакие гены называются полимернами или множественными

Слайд 88
Полимерия может быть кумулятивной (суммирующей, аддитивной) и некумулятивной
При кумулятивной полимерии

степень проявления признака зависит от числа доминантных аллелей соответствующих полимерных

генов.
Например, чем больше доминантных аллелей генов, отвечающих за окраску кожи, содержится в генотипе человека, тем его кожа темнее.

Полимерия может быть кумулятивной (суммирующей, аддитивной) и некумулятивнойПри кумулятивной полимерии степень проявления признака зависит от числа доминантных

Слайд 89
При некумулятивной полимерии степень развития признака зависит не от количества

доминантных аллелей, а лишь от их наличия в генотипе. Например,

куры с генотипом а1,а2,а3, имеют неоперенные ноги, во всех остальных случаях – ноги оперены
Модифицирующие гены - гены, усиливающие или ослабляющие действие других генов
При некумулятивной полимерии степень развития признака зависит не от количества доминантных аллелей, а лишь от их наличия

Слайд 90Сцепленное наследование
Сцепленное наследование - явление совместного наследования генов, локализованных в

одной хромосоме (Первый закон Т.Моргана).
Материальной основой сцепления генов является хромосома
Гены,

локализованные в одной хромосоме, наследуются совместно и образуют одну группу сцепления
Сцепленное наследованиеСцепленное наследование - явление совместного наследования генов, локализованных в одной хромосоме (Первый закон Т.Моргана).Материальной основой сцепления

Слайд 91
Сцепление генов может нарушаться в процессе кроссинговера, что приводит к

образованию рекомбинантных хромосом
Вереятность возникновения перекреста между генами зависит от их

расположения в хромосоме: чем дальше друг от друга расположены гены, тем выше вереятность перекреста между ними
За единицу расстояния между генами, находящимися в одной хромосоме, принят 1 % кроссинговера.
Единица расстояния между генами названа морганидой (в честь Т.Моргана)

Сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосомВереятность возникновения перекреста между генами

Слайд 92Изменчивость организмов

Ненаследственная изменчивость
Наследственная изменчивость


Изменчивость организмовНенаследственная изменчивостьНаследственная изменчивость

Слайд 93
Изменчивость- процесс возникновения различий между особями одного и разных видов,

между предками и потомками, возникшие как под влиянием наследственности так

и под действием внешних условий

Изменчивость- процесс возникновения различий между особями одного и разных видов, между предками и потомками, возникшие как под

Слайд 94НЕНАСЛЕДСТВЕННАЯ ИЗМЕНЧИВОСТЬ
Изменения в организмах, обусловленные разнообразием условий их существования и

вследствие этого разным характером реализации генотипов в конкретных фенотипах являются

ненаследственными, фенотипическими.
Такая изменчивость является ненаследственной, фенотипической или модификационной, а сами изменения носят название модификаций. по наследству не передаются, так как наследственная программа остается неизменной
НЕНАСЛЕДСТВЕННАЯ ИЗМЕНЧИВОСТЬИзменения в организмах, обусловленные разнообразием условий их существования и вследствие этого разным характером реализации генотипов в

Слайд 95НАСЛЕДСТВЕННАЯ ИЗМЕНЧИВОСТЬ
Для эволюционного процесса имеет значение только наследственная изменчивость, которая,

возникнув у отдельной особи, передается по наследству
Виды наследственной изменчивости

– мутационная и комбинационная
НАСЛЕДСТВЕННАЯ ИЗМЕНЧИВОСТЬДля эволюционного процесса имеет значение только наследственная изменчивость, которая, возникнув у отдельной особи, передается по наследству

Слайд 96Мутационная изменчивость
Внезапное и скачкообразное изменение наследственной программы называется мутацией.
В зависимости

от характера изменений, происходящих в хромосомах генотипа, мутации подразделяются на

генные, хромосомные и геномные
Вызывая изменения наследственной программы, а следовательно и белкового синтеза, мутации приводят к изменчивости организмов, которая называется мутационной изменчивостью.

Мутационная изменчивостьВнезапное и скачкообразное изменение наследственной программы называется мутацией.В зависимости от характера изменений, происходящих в хромосомах генотипа,

Слайд 97Свойства мутаций
Мутации:
могут происходить у любого организма,
на

любой стадии его развития,
в различных тканях и клетках,

они возникают внезапно, без всяких переходов,
являются устойчивыми в ряду поколений.

Свойства мутацийМутации: могут происходить у любого организма,  на любой стадии его развития, в различных тканях и

Слайд 98
Мутации происходят под влиянием как внешних, так и внутренних факторов.

Мутации всегда случайны, разнонаправлены и не соответствуют факторам, их вызывавшим.


Для организма они могут быть и полезными и вредными, но чаще всего они вредны, т.к. нарушают генный баланс, слаженность генотипа.
Мутации могут привести организм к гибели и тогда они называются летальными.
Мутации происходят под влиянием как внешних, так и внутренних факторов. Мутации всегда случайны, разнонаправлены и не соответствуют

Слайд 99
Генные мутации - изменения происходят в молекулярной структуре гена.
Генные мутации

имеют наибольшее значение в эволюционном процессе и представляют большой интерес

для селекции.
Хромосомные мутации обуславливаются перестройками хромосом и нарушением их структуры, происходящими обычно при клеточном делении.

Генные мутации - изменения происходят в молекулярной структуре гена.Генные мутации имеют наибольшее значение в эволюционном процессе и

Слайд 101
Геномные – это изменения числа хромосом в клетке, возникающие чаще

всего в результате нарушений клеточного деления. При этом может быть

уменьшение или увеличение числа хромосом полными гаплоидными наборами и тогда возникают гаплоиды и полиплоиды, или за счет отдельных хромосом в диплоидном наборе и образуются гетероплоиды.

Геномные – это изменения числа хромосом в клетке, возникающие чаще всего в результате нарушений клеточного деления. При

Слайд 102Комбинационная изменчивость
Изменчивость возникающая в процессе полового размножения.
Этапы возникновения комбинационной изменчивости:

а профазе 1 в результате кроссинговера;
в анофазе 1 при

независимом расхождении гамологичных хромосом каждой пары (материнских и отцовских) к различным полюсам клетки;
при оплодотворении может происходить случайное сочетание половых клеток.


Комбинационная изменчивостьИзменчивость возникающая в процессе полового размножения.Этапы возникновения комбинационной изменчивости: а профазе 1 в результате кроссинговера; в

Слайд 103
При комбинационной изменчивости происходит новая комбинация генов. Сами гены, их

молекулярная структура не изменяются. Изменяются лишь их сочетания и характер

взаимодействия в генотипе

При комбинационной изменчивости происходит новая комбинация генов. Сами гены, их молекулярная структура не изменяются. Изменяются лишь их

Слайд 104
Комбинационная изменчивость связана только с новыми комбинациями и рекомбинациями генов,

и дает огромное разнообразие форм.
Генные мутации создают новые наследственные единицы-гены

и, тем самым представляет естественному отбору исходный материал. Именно генные мутации вызывают ту самую неопределенную изменчивость, которой Дарвин придавал главное значение в эволюции

Комбинационная изменчивость связана только с новыми комбинациями и рекомбинациями генов, и дает огромное разнообразие форм.Генные мутации создают

Слайд 105
Естественный отбор оценивает качество мутаций. Он сохраняет те формы, которые

в результате мутаций оказались более приспособленными к данным условиям и

уничтожает формы с мутациями, снижающими их приспособленность.

Естественный отбор оценивает качество мутаций. Он сохраняет те формы, которые в результате мутаций оказались более приспособленными к

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика