Разделы презентаций


Обмен нуклеотидов Матричные биосинтезы

Содержание

Актуальность темыНуклеотиды и их производные выполняют многообразные функции в организме человека: участвуют в синтезе нуклеиновых кислот, нуклеотидных коферментов (NAD, NADP, FAD, FMN), участвуют в образовании активных форм углеводов (УДФ-глюкоза), аминокислот (SAM),

Слайды и текст этой презентации

Слайд 1Лекция 8. Обмен нуклеотидов Матричные биосинтезы
Дисциплина: С.2.Б.5 биологическая химия, биохимия полости

рта
Специальность: 060201 стоматология

НГМУ, кафедра медицинской химии
Д.б.н., доцент Суменкова Дина Валерьевна

Лекция 8. Обмен нуклеотидов Матричные биосинтезы Дисциплина: С.2.Б.5 биологическая химия, биохимия полости ртаСпециальность: 060201 стоматологияНГМУ, кафедра медицинской

Слайд 2Актуальность темы
Нуклеотиды и их производные выполняют многообразные функции в организме

человека: участвуют в синтезе нуклеиновых кислот, нуклеотидных коферментов (NAD, NADP,

FAD, FMN), участвуют в образовании активных форм углеводов (УДФ-глюкоза), аминокислот (SAM), «энергетических молекул» (АТФ, ГТФ), участвуют в передаче сигнала гормонов в клетку (цАМФ, цГМФ).
Нарушение процессов обмена нуклеотидов лежит в основе патогенеза некоторых заболеваний человека (подагра, мегалобластная анемия, иммунодефицитные состояния).
Нуклеиновые кислоты – биомолекулы, участвующие в хранении и передаче наследственной информации. Синтез нуклеиновых кислот и белков (матричные биосинтезы) – основа роста организма.
Методы молекулярной биологии – основа современной диагностики и терапии (ПЦР-анализ, генная терапия).
В основе механизма действия ряда противовирусных и противоопухолевых препаратов лежит ингибирование процессов синтеза нуклеотидов и нуклеиновых кислот.
Актуальность темыНуклеотиды и их производные выполняют многообразные функции в организме человека: участвуют в синтезе нуклеиновых кислот, нуклеотидных

Слайд 3План лекции
Образование фосфорибозилдифосфата (ФРДФ) – ключевой момент в синтезе нуклеотидов
Синтез

и катаболизм пуриновых нуклеотидов: ход процесса, регуляция, «запасные» пути синтеза.

Нарушения обмена пуриновых нуклеотидов
Синтез и катаболизм пиримидиновых нуклеотидов: ход процесса, регуляция. Нарушения обмена пиримидиновых нуклеотидов
Образование дезоксирибонуклеотидов
Матричные биосинтезы: репликация, транскрипция, трансляция
Синтез нуклеотидов и матричные биосинтезы – мишень действия противоопухолевых, противовирусных и антибактериальных лекарственных препаратов (задание для самостоятельной работы, см. слайд 41 и 72 )

План лекцииОбразование фосфорибозилдифосфата (ФРДФ) – ключевой момент в синтезе нуклеотидовСинтез и катаболизм пуриновых нуклеотидов: ход процесса, регуляция,

Слайд 4Цель лекции
Знать:
Основные метаболические пути превращения пуриновых и пиримидиновых нуклеотидов
Химико-биологическую сущность

процессов репликации, транскрипции, трансляции

Использовать знания об обмене нуклеотидов, синтезе нуклеиновых

кислот и белков для понимания механизмов роста и сохранения генома, механизмов возникновения заболеваний, связанных с нарушением изучаемых процессов, механизма действия противоопухолевых, противовирусных и антибактериальных лекарственных препаратов

Цель лекцииЗнать:Основные метаболические пути превращения пуриновых и пиримидиновых нуклеотидовХимико-биологическую сущность процессов репликации, транскрипции, трансляцииИспользовать знания об обмене

Слайд 5Вспомните самостоятельно из курса химии, используя слайды 6-14
Пуриновые и пиримидиновые

азотистые основания
Структура пуриновых и пиримидиновых нуклеотидов. Виды химических связей в

нуклеотидах
Строение и роль нуклеиновых кислот (ДНК и РНК) Виды РНК и особенности их строения
Вспомните самостоятельно из курса химии, используя слайды 6-14 Пуриновые и пиримидиновые азотистые основанияСтруктура пуриновых и пиримидиновых нуклеотидов.

Слайд 6Строение нуклеиновых кислот
Функция: хранение, передача, реализация наследственной информации
Нуклеиновые кислоты (НК)

- биополимеры
Мономер – нуклеотид
Строение нуклеотида:
азотистое основание + пентоза + остаток

фосфорной кислоты

Азотистые основания (АО)

Строение нуклеиновых кислотФункция: хранение, передача, реализация наследственной информацииНуклеиновые кислоты (НК) - биополимерыМономер – нуклеотидСтроение нуклеотида:азотистое основание +

Слайд 7Пентозы в структуре нуклеиновых кислот

Пентозы в структуре нуклеиновых кислот

Слайд 8Первичная структура НК: последовательность нуклеотидов

Химические связи:

1 - 5′-фосфоэфирная
2 – N-гликозидная
3

- 3′,5′ - фосфодиэфирная

Условные обозначения:

Х – водород в ДНК
или -ОН

в РНК



Первичная структура НК: последовательность нуклеотидовХимические связи:1 - 5′-фосфоэфирная2 – N-гликозидная3 - 3′,5′ - фосфодиэфирнаяУсловные обозначения:Х – водород

Слайд 9Вторичная структура ДНК: двойная спираль
Правозакрученная спираль
(виток =

10 н.п.)
Цепи антипараллельны: 5′→3′ и 3′→ 5′
Водородные связи между АО

цепей
Стэкинг-взаимодействия (гидрофобные) между АО «в стопке»
Комплементарность цепей (А-Т, Г-Ц)
Правило Чаргаффа: А=Т, Г=Ц,
А+Т / C+G – характеристика вида
Вторичная структура ДНК: двойная спиральПравозакрученная спираль   (виток = 10 н.п.)Цепи антипараллельны: 5′→3′ и 3′→ 5′Водородные

Слайд 10Третичная структура ДНК: нуклеопротеидные комплексы (хромосомы)
Гистоновые белки: белки с высоким

содержанием лиз и арг
5 типов: Н1, Н2А, Н2В, Н3, Н4
Негистоновые

белки: белки и ферменты, участвующие в матричных биосинтезах
Роль белков: обеспечивают суперспирализацию и компактизацию ДНК
Нуклеосома
ДНК (≈146 н.п.) + 8 молекул гистонов (Н2А, Н2В, Н3, Н4)2
Структура удерживается ионными связями между лиз, арг и остатками Н3РО4
Линкерные участки
Участок ДНК (≈30 н.п.) между нуклеосомами, с которым связаны молекулы гистона Н1

Гетерохроматин – «компактный» хроматин, транскрипционно неактивный
Эухроматин – деспирализованный хроматин с низким содержанием гистонов и высоким содержанием негистоновых белков (период транскрипции)


Третичная структура ДНК: нуклеопротеидные комплексы (хромосомы)Гистоновые белки: белки с высоким содержанием лиз и арг5 типов: Н1, Н2А,

Слайд 11Структура нуклеосом

Структура нуклеосом

Слайд 12Пространственная структура РНК
Одноцепочечная
Шпильки – спирализованные участки (водородные связи)
Не соблюдается правило

Чаргаффа
Виды РНК:
мРНК
матрица в синтезе белка
2-4% от общего количества РНК, разнообразная

первичная структура
5′ - «кэп»-конец: 7-метил ГТФ (защита от нуклеаз, участие в инициации трансляции)
3′ - поли(А)-«хвост»: 150-200 остатков АМФ (выход из ядра, защита от нуклеаз)
Пространственная структура РНКОдноцепочечнаяШпильки – спирализованные участки (водородные связи)Не соблюдается правило ЧаргаффаВиды РНК:мРНКматрица в синтезе белка2-4% от общего

Слайд 13тРНК
Структура тРНК:
1 – шпильки
2 - петли
молекулы-адапторы: переводят информацию мРНК в

последовательность аминокислот в белке
15% от общего количества РНК
содержат
минорные нуклеотиды
(например,
с метилированными

АО)


тРНКСтруктура тРНК:1 – шпильки2 - петлимолекулы-адапторы: переводят информацию мРНК в последовательность аминокислот в белке15% от общего количества

Слайд 14рРНК
структурный компонент рибосом
80% от общего количества РНК в клетке
4 типа

у эукариот: 5S, 5,8S, 18S, 28S
S –

единица Сведберга, скорость осаждения при центрифигировании
рРНК структурный компонент рибосом80% от общего количества РНК в клетке4 типа у эукариот: 5S,  5,8S,

Слайд 15Образование фосфорибозилдифосфата (ФРДФ)
Продукты расщепления нуклеиновых кислот тканей и пищи используются

повторно в незначительной степени.
Почти все клетки способны к синтезу нуклеотидов.

Образование

ФРДФ – центральное место в синтезе пуриновых и пиримидиновых нуклеотидов
Источник образования ФРДФ: рибозо-5-фосфат
(продукт ПФП окисления глюкозы)

рибозо-5-фосфат + АТФ → 5-фосфорибозил-1-дифосфат + АМФ (ФРДФ синтетаза)

Образование фосфорибозилдифосфата (ФРДФ)Продукты расщепления нуклеиновых кислот тканей и пищи используются повторно в незначительной степени.Почти все клетки способны

Слайд 16Синтез пуриновых нуклеотидов: основные этапы (см. схему реакций на слайде 17)


Сборка пуринового гетероциклического основания осуществляется на ФРДФ при участии глицина,

глутамина, аспартата, СО2 и одноуглеродных производных Н4-фолата в цитозоле:
формирование 5-членного кольца
формирование 6-членного кольца
образование первого пуринового нуклеотида – инозинмонофосфата (ИМФ)
Синтез ИМФ включает 10 стадий и требует затрат 6 АТФ
образование АМФ и ГМФ
Синтез пуриновых нуклеотидов: основные этапы (см. схему реакций на слайде 17) Сборка пуринового гетероциклического основания осуществляется на

Слайд 18Происхождение атомов С и N в пуриновом основании

Происхождение атомов С и N в пуриновом основании

Слайд 19Образование АМФ и ГМФ из ИМФ Образование АДФ, ГДФ, ГТФ
В образовании

АМФ из ИМФ участвует аспартат
В образовании ГМФ из ИМФ

участвует глутамин
Схема реакций представлена на слайде 20.
Нуклеозидди- и трифосфаты синтезируются при участии АТФ и киназ:
АМФ + АТФ ↔ 2АДФ (аденилаткиназа)
ГМФ + АТФ → ГДФ + АДФ (гуанилаткиназа)
ГДФ + АТФ → ГТФ + АДФ

Внимание! Образование АТФ происходит только путем субстратного и окислительного фосфорилирования
Образование АМФ и ГМФ из ИМФ Образование АДФ, ГДФ, ГТФВ образовании АМФ из ИМФ участвует аспартат В

Слайд 21Ферменты синтеза АМФ И ГМФ: подписи к схеме слайда 20.
В синтезе

АМФ из ИМФ участвуют ферменты:
1 – аденилосукцинатсинтетаза
2 – аденилосукциназа
В синтезе

ГМФ из ИМФ участвуют ферменты:
3 – ИМФ-дегидрогеназа
4 – ГМФ-синтетаза
КМФ – ксантозин-5-монофосфат
Ферменты синтеза АМФ И ГМФ: подписи к схеме слайда 20.В синтезе АМФ из ИМФ участвуют ферменты:1 –

Слайд 22Регуляция синтеза пуриновых нуклеотидов
Аллостерические ферменты:
ФРДФ-синтетаза
амидофосфорибозилтрансфераза
ИМФ-дегидрогеназа
Аденилосукцинатсинтетаза
Отрицательные эффекторы: АМФ, ГМФ

Регуляция синтеза пуриновых нуклеотидовАллостерические ферменты:ФРДФ-синтетазаамидофосфорибозилтрансферазаИМФ-дегидрогеназаАденилосукцинатсинтетазаОтрицательные эффекторы: АМФ, ГМФ

Слайд 23Запасные пути синтеза пуриновых нуклеотидов : роль «пути спасения»
В период

активного роста тканей синтез пуриновых нуклеотидов из простых предшественников не

способен полностью обеспечить нуклеиновые кислоты субстратами, поэтому в этих условиях важную роль играют «пути спасения»
Запасные пути синтеза пуриновых нуклеотидов : роль «пути спасения»В период активного роста тканей синтез пуриновых нуклеотидов из

Слайд 24Пути спасения в синтезе пуриновых нуклеотидов

Пути спасения в синтезе пуриновых нуклеотидов

Слайд 25Ферменты «пути спасения» в синтезе пуриновых нуклеотидов
К слайду 24:
1

– гипоксантин-гуанинфосфорибозилтрансфераза
2 – аденинфосфорибозилтрансфераза
3 - аденозинкиназа

Ферменты «пути спасения» в синтезе пуриновых нуклеотидов К слайду 24:1 – гипоксантин-гуанинфосфорибозилтрансфераза2 – аденинфосфорибозилтрансфераза3 - аденозинкиназа

Слайд 26Катаболизм пуриновых нуклеотидов
Отщепление фосфата, аминогруппы, рибозы с образованием азотистых оснований

гипоксантина и ксантина (см. схему реакций на слайде 27)
Терминальный фермент

катаболизма: ксантиноксидаза (аэробная дегидрогеназа)
Кофакторы: Fe 3+, Мо 2+, FAD
Конечный продукт: мочевая кислота
образуется в основном в печени и кишечнике
выводится с мочой и через кишечник
слабая кислота: в биологических жидкостях находится в комплексе с белками или в виде натриевой соли (ураты)
в крови: 0,15 – 0,47 ммоль/л (3-7 мг/дл)
выводится в сутки: 0,4 – 0,6 г мочевой кислоты и уратов
Катаболизм пуриновых нуклеотидовОтщепление фосфата, аминогруппы, рибозы с образованием азотистых оснований гипоксантина и ксантина (см. схему реакций на

Слайд 27Схема реакций катаболизма пуриновых нуклеотидов

Схема реакций катаболизма пуриновых нуклеотидов

Слайд 28Ферменты катаболизма пуриновых нуклеотидов
К слайду 27:
1 – фосфатаза (нуклеотидаза)
2 –

аденозиндезаминаза
3 – пуриннуклеозидфосфорилаза
4 – гуаназа
5 - ксантиноксидаза

Ферменты катаболизма пуриновых нуклеотидовК слайду 27:1 – фосфатаза (нуклеотидаза)2 – аденозиндезаминаза3 – пуриннуклеозидфосфорилаза4 – гуаназа5 - ксантиноксидаза

Слайд 29Нарушения обмена пуриновых нуклеотидов
Дефект генов ферментов
гиперактивация или устойчивость ФРДФ-синтетазы к

аллостерическим ингибиторам
снижение активности гипоксантин-гуанинфосфорибозилтрнасферазы (уменьшается повторное использование пуринов)
Подагра (гиперурикемия, отложение

мочевой кислоты в суставах)
Аллопуринол (лекарственный препарат) – структурный аналог гипоксантина, используется в лечении подагры.
Каков механизм действия препарата?
Катаболизм пуринов останавливается на стадии гипоксантина, который лучше растворяется в жидкостях организма, чем мочевая кислота.
Нарушения обмена пуриновых нуклеотидовДефект генов ферментовгиперактивация или устойчивость ФРДФ-синтетазы к аллостерическим ингибиторамснижение активности гипоксантин-гуанинфосфорибозилтрнасферазы (уменьшается повторное использование

Слайд 30Синтез пиримидиновых нуклеотидов
Основные этапы синтеза:
Формирование пиримидинового кольца (оротата) из глутамина,

аспартата, СО2
Взаимодействие оротата с ФРДФ с образованием УМФ
Фосфорилирование УМФ
Образование ЦТФ

из УТФ
Синтез пиримидиновых нуклеотидовОсновные этапы синтеза:Формирование пиримидинового кольца (оротата) из глутамина, аспартата, СО2Взаимодействие оротата с ФРДФ с образованием

Слайд 31Образование оротата и УМФ
глутамин + СО2 + 2 АТФ

+ Н2О → карбамоилфосфат + 2 АДФ + Рi (карбамоилфосфатсинтетаза

II)
присоединение аспартата (образование карбамоиласпартата), отщепление воды (образование циклического дигидрооротата)
Данные реакции катализирует мультиферментный комплекс КАД-фермент:
карбамоилфосфатсинтетаза
аспартаттранскарбамоилаза
дигидрооротаза
окисление дигидрооротата при участии NAD-дегидрогеназы с образованием оротата
реакция с ФРДФ: перенос фосфорибозила на оротат и декарбоксилирование оротидинфосфата с образованием УМФ (УМФ-синтаза: трансфераза и декарбоксилаза)

Образование оротата и УМФ глутамин + СО2 + 2 АТФ + Н2О → карбамоилфосфат + 2 АДФ

Слайд 32Нарушения образования оротата
Мутация в гене УМФ-синтазы приводит к нарушению образования

УМФ их оротата и вызывает наследственное заболевание, которое сопровождается оратацидурией
Клинические

проявления: мегалобластная анемия, нарушение работы ЖКТ, сердца, интеллектуальной и двигательной активности
Причина проявлений: «пиримидиновый голод»
Нарушения образования оротатаМутация в гене УМФ-синтазы приводит к нарушению образования УМФ их оротата и вызывает наследственное заболевание,

Слайд 33Фосфорилирование УМФ и образование ЦТФ
Фосфорилирование УМФ: образование УТФ
УМФ + АТФ →

УДФ + АДФ
УДФ + АТФ → УТФ + АДФ
Реакции

катализируют киназы
Образование ЦТФ:
УТФ + глутамин + АТФ → ЦТФ + глутамат + АДФ +H3PO4
(ЦТФ синтетаза)
Фосфорилирование УМФ и образование ЦТФФосфорилирование УМФ: образование УТФУМФ + АТФ → УДФ + АДФ УДФ + АТФ

Слайд 34Регуляция синтеза пиримидиновых нуклеотидов
Аллостерическая регуляция по механизму отрицательной обратной связи:
УТФ

ингибирует КФС II в составе КАД-фермента
УМФ и ЦМФ ингибируют УМФ-синтазу
ЦТФ

ингибирует ЦТФ-синтетазу

Регуляция синтеза пиримидиновых нуклеотидовАллостерическая регуляция по механизму отрицательной обратной связи:УТФ ингибирует КФС II в составе КАД-ферментаУМФ и

Слайд 35Катаболизм пиримидиновых нуклеотидов
Отщепление остатков фосфорной кислоты и рибозы (аналогично катаболизму

пуриновых нуклеотидов)
Пиримидиновые основания разрушаются ферментными системами: например
Цитозин → СО2 +

NH3 + бета-аланин
Бета-аланин включается в состав карнозина и ансерина (мышечные пептиды)
Катаболизм пиримидиновых нуклеотидовОтщепление остатков фосфорной кислоты и рибозы (аналогично катаболизму пуриновых нуклеотидов)Пиримидиновые основания разрушаются ферментными системами: напримерЦитозин

Слайд 36Образование дезоксирибонуклеотидов
Образование дНДФ (А, Г, Ц, У) из НДФ
Образование дТМФ

из дУМФ
Внутриклеточная концентрация дезоксирибонуклеотидов низкая
Активность процесса их образования повышается

перед делением клеток во время репликации
2 ферментных комплекса:
рибонуклеотидредуктаза (восстановление рибонуклеотидов с образованием дезоксипроизводных):
рибонуклеотидредуктаза
белок-восстановитель тиоредоксин
тиоредоксинредуктаза
тимидилсинтаза
Образование дезоксирибонуклеотидовОбразование дНДФ (А, Г, Ц, У) из НДФОбразование дТМФ из дУМФВнутриклеточная концентрация дезоксирибонуклеотидов низкая Активность процесса

Слайд 37«Работа» рибонуклеотидредуктазы

«Работа» рибонуклеотидредуктазы

Слайд 38Регуляция активности рибонуклеотидредуктазного комлпекса
Аллостерический фермент
Отрицательные эффекторы: дНТФ
дАТФ – ингибитор восстановления

всех рибонуклеотидов
Иммунодефициты: накопление дАТФ, связанное со снижением активности аденозиндезаминазы (фермент

реакции гидролитического дезаминирования аденозина) приводит к ингибированию рибонуклеотидредуктазы и лишает клетки-предшественники В и Т-лимфоцитов образования дезоксирибонуклеотидов и синтеза ДНК
Регуляция активности рибонуклеотидредуктазного комлпексаАллостерический ферментОтрицательные эффекторы: дНТФдАТФ – ингибитор восстановления всех рибонуклеотидовИммунодефициты: накопление дАТФ, связанное со снижением

Слайд 39Синтез тимидиловых нуклеотидов
Тимидилсинтазный комплекс ферментов и его ингибирование фторурацилом и

метотрексатом

Синтез тимидиловых нуклеотидовТимидилсинтазный комплекс ферментов и его ингибирование фторурацилом и метотрексатом

Слайд 40Тимидилсинтазный комплекс ферментов
1- Тимидилсинтаза (включение одноуглеродного радикала в дУМФ)
2- Дигидрофолатредуктаза
3-

Сериноксиметилтрансфераза (перенос оксиметильной группы с серина на Н4-фолат с образованием

метилен-Н4-фолата)
Тимидилсинтазный комплекс ферментов1- Тимидилсинтаза (включение одноуглеродного радикала в дУМФ)2- Дигидрофолатредуктаза3- Сериноксиметилтрансфераза (перенос оксиметильной группы с серина на

Слайд 41Задание для самостоятельной работы
Изучить информацию по теме: «Ферменты синтеза нуклеотидов

– мишени действия противоопухолевых и противовирусных препаратов» (см. список литературы)
Составить

таблицу (препарат – механизм действия – область применения) и охарактеризовать препараты: фторурацил, метотрексат, ацикловир, азидотимидин


Задание для самостоятельной работыИзучить информацию по теме: «Ферменты синтеза нуклеотидов – мишени действия противоопухолевых и противовирусных препаратов»

Слайд 42Заключение «Обмен нуклеотидов»
Большая часть используемых в клетках нуклеотидов синтезируется de

novo из простых предшественников (с участием аминокислот, производных фолиевой кислоты).

Центральное место в синтезе нуклеотидов занимает образование фосфорибозилдифосфата.
«Запасные» пути синтеза (из имеющихся в клетке азотистых оснований и нуклеозидов) играют важную роль в образовании пуриновых нуклеотидов.
Нарушение катаболизма пуриновых нуклеотидов лежит в основе патогенеза подагры. Нарушение синтеза пиримидиновых нуклеотидов лежит в основе патогенеза мегалобластной анемии.
Механизм действия ряда противовирусных и противоопухолевых лекарственных препаратов связан с нарушением синтеза нуклеотидов (задание для самостоятельной работы).
Заключение «Обмен нуклеотидов»Большая часть используемых в клетках нуклеотидов синтезируется de novo из простых предшественников (с участием аминокислот,

Слайд 43Литература по теме «Обмен нуклеотидов»

1. Биохимия с упражнениями и задачами: учебник

для студентов ВУЗов / ред. С. Е. Северин. - М.: ГЭОТАР-Медиа,

2010. - 384 с. (С. 183-191, для выполнения самостоятельной работы «Лекарственные препараты-ингибиторы синтеза нуклеотидов» см. С. 189)
2. Березов Т. Т. Биологическая химия: учебник для студ. мед. вузов / Т. Т. Березов, Б. Ф. Коровкин. - 3-е изд., перераб. и доп. - М.: Медицина, 2004. - 704 с. (глава 13, С. 470-478)



Литература по теме «Обмен нуклеотидов»1. Биохимия с упражнениями и задачами: учебник для студентов ВУЗов / ред. С. Е. Северин.

Слайд 44Матричные биосинтезы
Репликация
Транскрипция
Трансляция

Матричные биосинтезыРепликацияТранскрипцияТрансляция

Слайд 45РЕПЛИКАЦИЯ: синтез ДНК
Протекает в ядре в S-фазу клеточного цикла перед

митозом
Стимулы: гормоны, ростовые факторы, белки-циклины
Матрица: обе нити ДНК, образуются 2

репликативные вилки
Направление синтеза новых цепей: 5′ - 3′ по принципу комплиментарности и антипараллельности
Участки синтеза – ориджины репликации
Участок ДНК между соседними ориджинами - репликон
Этапы репликации: инициация, элонгация, терминация
Субстраты и источники энергии: дАТФ, дГТФ, дТТФ, дЦТФ
Кофактор: Mg2+
Полуконсервативный процесс синтеза: каждая дочерняя молекула ДНК содержит одну родительскую нить и одну синтезированную
Образуется идентичная молекула ДНК (клетка 4n)



РЕПЛИКАЦИЯ: синтез ДНКПротекает в ядре в S-фазу клеточного цикла перед митозомСтимулы: гормоны, ростовые факторы, белки-циклиныМатрица: обе нити

Слайд 461 этап репликации: инициация
Формирование репликативной вилки:

ДНК-топоизомераза гидролизует 3′,5′-фосфодиэфирную связь в

одной из цепей ДНК и присоединяется к 5′-концу в точке

разрыва
2. ДНК-хеликаза, используя энергию АТФ, разрывает водородные связи и обеспечивает локальное разделение двойной спирали ДНК
ДНК-топоизомераза восстанавливает 3′,5′-фосфодиэфирную связь и отделяется
SSB (single strand binding)–белки связываются с одноцепочечными участками, препятствуя комплементарному скручиванию цепей


1 этап репликации: инициацияФормирование репликативной вилки:ДНК-топоизомераза гидролизует 3′,5′-фосфодиэфирную связь в одной из цепей ДНК и присоединяется к

Слайд 47Схема инициации репликации

Схема инициации репликации

Слайд 482 этап репликации: элонгация
Синтез новых цепей ДНК
Лидирующая цепь: 3′ -

5′ (синтез непрерывный по ходу движения репликативной вилки)
Отстающая цепь: 5′

- 3′ (рост этой цепи начинается после того, как на лидирующей цепи синтезируется участок из ≈200 нуклеотидов, синтез идет против движения репликативной вилки в виде фрагментов Оказаки)
Синтез цепей начинается с образования «затравки» (РНК-праймера из ≈10 нуклеотидов)
Ферменты:
ДНК-полимераза α синтезирует РНК-праймер и небольшой участок ДНК
ДНК-полимераза δ удлиняет лидирующую цепь
ДНК-полимераза δ или ε удлиняют отстающую цепь
2 этап репликации: элонгацияСинтез новых цепей ДНКЛидирующая цепь: 3′ - 5′ (синтез непрерывный по ходу движения репликативной

Слайд 493 этап репликации: терминация
Исключение праймеров
Завершение формирования отстающей цепи ДНК

Эндонуклеаза (РНКаза)

удаляет РНК-праймер
ДНК-полимераза β заполняет «брешь»
ДНК-лигаза объединяет фрагменты, затрачивая энергию АТФ

3 этап репликации: терминацияИсключение праймеровЗавершение формирования отстающей цепи ДНКЭндонуклеаза (РНКаза) удаляет РНК-праймерДНК-полимераза β заполняет «брешь»ДНК-лигаза объединяет фрагменты,

Слайд 50Схема репликативной вилки

Схема репликативной вилки

Слайд 51Репарация ошибок и повреждений ДНК
Причина повреждений ДНК:
действие факторов окружающей и

внутренней среды
Повреждение ДНК происходит с частотой от нескольких сотен до

1000 случаев в каждой клетке, каждый час

Виды повреждений:
дезаминирование АО (цитозин превращается в урацил), метилирование АО
депуринизация, депиримидинизация
образование пиримидиновых димеров (действие УФО)
разрыв цепей, ковалентные сшивки между цепями
ошибки репликации
Система репарации – ферменты (нуклеазы, полимеразы, лигазы)
Репарация ошибок и повреждений ДНКПричина повреждений ДНК:действие факторов окружающей и внутренней средыПовреждение ДНК происходит с частотой от

Слайд 52Схема работы системы репарации ДНК

Схема работы системы репарации ДНК

Слайд 53Роль системы репарации
Репарация необходима для сохранения генома и возможна благодаря

существованию 2-х цепей ДНК

Снижение активности ферментов репарации приводит к накоплению

мутаций
Полагают, что от 80 % до 90 % всех раковых заболеваний связаны с нарушением репарации ДНК
ПРИМЕР: пигментная ксеродерма – наследственное заболевание, связанное с мутацией генов системы репарации ДНК; УФО таких больных приводит к накоплению мутаций в клетках кожи и развитию рака

Роль системы репарацииРепарация необходима для сохранения генома и возможна благодаря существованию 2-х цепей ДНКСнижение активности ферментов репарации

Слайд 54ТРАНСКРИПЦИЯ: синтез РНК
Протекает в ядре вне зависимости от фаз клеточного

цикла
Матрица: нить ДНК 3′ - 5′
Субстраты и источники энергии: АТФ,

ГТФ, ЦТФ, УТФ
Направление синтеза: 5′ - 3′ по принципу комплиментарности и антипараллельности
Этапы: инициация, элонгация, терминация
Участвуют факторы инициации, элонгации и терминации
Образуются комплиментарные матрице продукты: мРНК, тРНК, рРНК
Ферменты:
РНК-полимераза I (синтез пре-рРНК)
РНК-полимераза II (синтез пре-мРНК)
РНК-полимераза III (синтез пре-тРНК)
ТРАНСКРИПЦИЯ: синтез РНКПротекает в ядре вне зависимости от фаз клеточного циклаМатрица: нить ДНК 3′ - 5′Субстраты и

Слайд 551 этап транскрипции: инициация
Промотор – последовательность ДНК (ТАТА), с которой

связывается РНК-полимераза
Сайт терминации – участок завершения синтеза РНК
Транскриптон – участок

ДНК ограниченный промотором и сайтом терминации

«Активация» промотора с помощью ТАТА-фактора
Взаимодействие промотора с РНК-полимеразой и факторами инициации
Факторы инициации обеспечивают расплетение двойной нити ДНК длиной в один виток (10 н.п.)

1 этап транскрипции: инициацияПромотор – последовательность ДНК (ТАТА), с которой связывается РНК-полимеразаСайт терминации – участок завершения синтеза

Слайд 562 этап транскрипции: элонгация и терминация
Элонгация: рост нити пре-РНК
Факторы элонгации (E,

H, F) повышают активность РНК-полимеразы и облегчают расхождение цепей. Один

ген может одновременно транскрибироваться несколькими молекулами РНК-полимеразы
Терминация: прекращение транскрипции
Факторы терминации облегчают отделение пре-РНК и РНК-полимеразы от матрицы ДНК
2 этап транскрипции: элонгация и терминацияЭлонгация: рост нити пре-РНКФакторы элонгации (E, H, F) повышают активность РНК-полимеразы и

Слайд 57Схема транскрипции

Схема транскрипции

Слайд 58 Посттранскрипционные модификации пре-РНК
«Созревание» пре-мРНК
«Кэпирование» на стадии элонгации
Образование поли(А)- «хвоста» после

транскрипции
Сплайсинг – удаление интронов (некодирующих последовательностей) и соединение экзонов
Участвуют

малые ядерные рибонуклеопротеины (мяРНП), образующие комплексы – сплайсосомы
Выход «зрелой» мРНК в цитоплазму
Альтернативный сплайсинг – механизм образования различных видов «зрелой» мРНК из одной и той же молекулы пре-мРНК в разных тканях
В результате в разных тканях при считывании информации с одного и того же гена образуются различные мРНК, а соответственно и различные белки

Посттранскрипционные модификации пре-РНК «Созревание» пре-мРНК«Кэпирование» на стадии элонгацииОбразование поли(А)- «хвоста» после транскрипцииСплайсинг – удаление интронов (некодирующих

Слайд 59Схема «созревания» пре-мРНК

Схема «созревания» пре-мРНК

Слайд 60«Созревание» пре-тРНК

Удаление интронов
Модификация азотистых оснований (10-15%)
Формирование акцепторного участка

и антикодона
3. Выход зрелых тРНК в цитоплазму

«Созревание» пре-тРНКУдаление интроновМодификация азотистых оснований (10-15%)  Формирование акцепторного участка и антикодона3. Выход зрелых тРНК в цитоплазму

Слайд 61«Созревание» пре-рРНК

«Созревание» пре-рРНК

Слайд 62ТРАНСЛЯЦИЯ: синтез белка
Место синтеза: рибосомы Матрица:

мРНК
Субстраты: аминокислоты (АК) Адапторы: тРНК
Источники энергии: АТФ, ГТФ
Кофактор: Mg

2+ (стабилизирует структуру рибосом)
Факторы инициации (IF), элонгации (EF), терминации (RF)
Активация АК: связывание с тРНК (аминоацил-тРНК-синтетазы)
Инициирующая аминоацил-тРНК (аа-тРНК): мет-тРНК
Инициирующий кодон мРНК: AUG
Этапы: инициации, элонгации, терминации
Образуется колинеарный матрице продукт – белок (последовательность АК соответствует последовательности кодонов мРНК)
Биологический код: запись информации о последовательности АК в белке с помощью последовательности нуклеотидов
Из школьного курса биологии вспомните и объясните свойства биологического кода!
ТРАНСЛЯЦИЯ: синтез белкаМесто синтеза: рибосомы     Матрица: мРНКСубстраты: аминокислоты (АК)  Адапторы: тРНКИсточники энергии:

Слайд 63Свойства биологического кода
Триплетность
Наличие терминирующих кодонов (UAA, UAG, UGA)
Специфичность
Вырожденность
Универсальность
Однонаправленность
Колинеарность

Свойства биологического кодаТриплетностьНаличие терминирующих кодонов (UAA, UAG, UGA)СпецифичностьВырожденностьУниверсальностьОднонаправленностьКолинеарность

Слайд 64Активация аминокислот

Активация аминокислот

Слайд 651 этап трансляции: инициация
К мРНК присоединяется малая субъединица рибосомы, фактор

инициации IF, мет-тРНК и ГТФ. Когда комплекс свяжется с кодоном

AUG, происходит присоединение большой субъединицы рибосомы, что сопровождается гидролизом ГТФ и отделением IF. Формируется полноценная рибосома с пептидильным (Р) и аминоацильным (А) центрами
1 этап трансляции: инициацияК мРНК присоединяется малая субъединица рибосомы, фактор инициации IF, мет-тРНК и ГТФ. Когда комплекс

Слайд 662 этап трансляции: элонгация (рост пептидной цепи)
Стадии элонгации:
Связывание аа-тРНК в

А-центре при участии фактора элонгации EF1 и с затратой энергии

ГТФ
Образование пептидной связи между АК Р-центра и АК А-центра при участии пептидилтрансферазы
Перемещение рибосомы по мРНК (транслокация) в направлении от 5′- к 3′-концу с использованием энергии ГТФ и при участии фактора элонгации EF2
Многократное повторение стадий
2 этап трансляции: элонгация (рост пептидной цепи)Стадии элонгации:Связывание аа-тРНК в А-центре при участии фактора элонгации EF1 и

Слайд 673 этап трансляции: терминация

Высвобождение пептида из связи
с тРНК и рибосомой:

Стоп-кодоны

UAA, UAG, UGA попадают в А-центр

Высвобождение полипептида при участии
факторов терминации

RF1, RF3 и энергии ГТФ
3 этап трансляции: терминацияВысвобождение пептида из связис тРНК и рибосомой:Стоп-кодоны UAA, UAG, UGA попадают в А-центрВысвобождение полипептида

Слайд 68Посттрансляционные модификации белков – образование функционально активных белков
Частичный протеолиз
Фолдинг –

формирование пространственной структуры (II, III) при участии белков-шаперонов
Модификация аминокислот (гликозилирование,

фосфорилирование, ацилирование, метилирование……)
Образование дисульфидных связей (цистеин-цистеин)
Присоединение простетической группы (сложные белки)
Сборка протомеров в олигомерные белки (формирование IV структуры)
Посттрансляционные модификации белков – образование функционально активных белковЧастичный протеолизФолдинг – формирование пространственной структуры (II, III) при участии

Слайд 69Регуляция матричных биосинтезов
Экспрессия генов — процесс, в ходе которого наследственная

информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт

— РНК или белок
Гены белков «домашнего хозяйства» (конститутивные) экспрессируются с постоянной скоростью и обеспечивают жизнеспособность клеток (например, гены ферментов энергетического обмена)

Регуляция матричных биосинтезовЭкспрессия генов — процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется

Слайд 70

Адаптивная регуляция обеспечивает изменение скорости экспрессии генов в ответ на

меняющиеся условия среды (индуцибельная экспрессия). Осуществляется при участии:
регуляторных белков, взаимодействующих

с участками ДНК
индукторов (стимулируют экспрессию) или корепрессоров (подавляют экспрессию)
Индукторы или корепрессоры стимулируют присоединение регуляторных белков к регуляторным участкам ДНК
В качестве индукторов и корепрессоров выступают гормоны, ростовые факторы, продукты метаболических путей
Регуляторные участки ДНК:
Энхансер – «усилитель» транскрипции
Сайленсер – «тушитель» транскрипции
ПРИМЕР:
ХОЛЕСТЕРИН (как корепрессор) → БЕЛОК-РЕГУЛЯТОР → САЙЛЕНСЕР → ПОДАВЛЕНИЕ ЭКСПРЕССИИ ГМГ-КоА-РЕДУКТАЗЫ (ключевой фермент синтеза холестерина) → СНИЖЕНИЕ СИНТЕЗА ХОЛЕСТЕРИНА



Адаптивная регуляция обеспечивает изменение скорости экспрессии генов в ответ на меняющиеся условия среды (индуцибельная экспрессия). Осуществляется при

Слайд 71Примеры ингибиторов матричных биосинтезов
Токсин белой поганки аманитин ингибирует РНК-полимеразу II

(синтез мРНК)
Энтеротоксин возбудителя дифтерии ингибирует трансляцию, модифицируя фактор элонгации EF2

и нарушая транслокацию рибосом
Интерфероны (гликопротеины лимфоцитов и макрофагов, обладающие противовирусной активностью):
активируют РНК-азу, расщепляющую мРНК и рРНК
стимулируют синтез протеинкиназы, которая фосфорилирует и тем самым инактивирует фактор инициации трансляции IF2
прекращается синтез белков в инфицированных клетках человека, клетка погибает, но останавливается размножение вирусов
Примеры ингибиторов матричных биосинтезовТоксин белой поганки аманитин ингибирует РНК-полимеразу II (синтез мРНК)Энтеротоксин возбудителя дифтерии ингибирует трансляцию, модифицируя

Слайд 72Задание для самостоятельной работы
Изучить информацию по теме: «Лекарственные препараты -

ингибиторы синтеза нуклеиновых кислот и белка» (см. список литературы)
Составить таблицу

(препарат – механизм действия – область применения) и охарактеризовать препараты: доксорубицин, циклофосфан, фторхинолоны, рифамицины (ингибиторы репликации и транскрипции), тетрациклин, эритромицин, левомицетин (ингибиторы трансляции)
Охарактеризовать метод ПЦР-диагностики (см. список литературы)

Задание для самостоятельной работыИзучить информацию по теме: «Лекарственные препараты - ингибиторы синтеза нуклеиновых кислот и белка» (см.

Слайд 73Заключение «Матричные биосинтезы»
Процессы репликации, транскрипции, трансляции (матричные биосинтезы) лежат в

основе «производства» белков и ферментов, функционирование которых является основой жизни
Регуляция

данных процессов лежит в основе адаптации организма
Нарушение данных процессов приводит к развитию заболеваний
Знания о нуклеиновых кислотах и механизмах матричных биосинтезов являются основой создания лекарственных препаратов, методов диагностики с использованием ДНК-технологий (ПЦР-диагностика) и методов терапии (генная терапия)
Заключение «Матричные биосинтезы»Процессы репликации, транскрипции, трансляции (матричные биосинтезы) лежат в основе «производства» белков и ферментов, функционирование которых

Слайд 74Литература по теме «Матричные биосинтезы»
Биологическая химия: учебник для студ. мед.

вузов / Т. Т. Березов, Б. Ф. Коровкин. - 3-е

изд., перераб.и доп. - М.: Медицина, 2004. - 704 с. (глава 3, 13 и 14)
Биохимия с упражнениями и задачами: учебник для студ. мед. вузов / ред. Е. С. Северин. - М. : ГЭОТАР-Медиа, 2010. - 384 с. (раздел 3, С. 54-79; для выполнения самостоятельной работы «Лекарственные препараты-ингибиторы матричных биосинтезов» и «ПЦР-диагностика» см. С. 70, 73-77)


Литература по теме «Матричные биосинтезы»Биологическая химия: учебник для студ. мед. вузов / Т. Т. Березов, Б. Ф.

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика