Разделы презентаций


Региональная экономика

Содержание

Лекция 10Методы оценки и выборов управленческих решений (часть 1)

Слайды и текст этой презентации

Слайд 1Региональная экономика
Тюрчев Кирилл

Факультета Социальных наук
Департамента государственного и муниципального управления

Региональная экономикаТюрчев КириллФакультета Социальных наукДепартамента государственного и муниципального управления

Слайд 2Лекция 10
Методы оценки и выборов управленческих решений (часть 1)

Лекция 10Методы оценки и выборов управленческих решений (часть 1)

Слайд 3Как мы можем голосовать?
Как правило, большинство голосов. Но и здесь

не так просто.
Большинство может быть разным:
Простым (50%+1 голос от общего

числа участвовавших в голосовании избирателей)
Абсолютным (50% + 1 голос от общего числа избирателей)
Относительным (когда проголосовало больше, чем за соперника)
Квалифицированным (например, 2/3 – конституционное большинство в Российской Федерации)
Как мы можем голосовать?Как правило, большинство голосов. Но и здесь не так просто.Большинство может быть разным:Простым (50%+1

Слайд 4Альтернативное голосование
Для того, чтобы избежать цикличности, можно сразу поставить задачу

избирателю проранжировать для себя каждого из кандидатов

Считаем голоса кандидатов, которых

избиратели поставили первыми. Если никто не набрал простого большинства, то:
Лузер первого тура «ликвидируется» из голосования
Смотрим, кто в бюллютенях этого «лузера» шел вторым
Суммируем голоса за этого «второго» с уже имеющимися результатами.

Повторяем до тех пор, пока не наберется абсолютное (иногда – простое) большинство.


Другое название метода – преференциальное голосование.

Самый признанный «практик» в части использования данного метода – Австралия (с 1918 г.)
Альтернативное голосованиеДля того, чтобы избежать цикличности, можно сразу поставить задачу избирателю проранжировать для себя каждого из кандидатовСчитаем

Слайд 5Подсчет Борда
Частный случай альтернативного голосования, применяемый в Науру
Чтобы не

искать «самого слабого» кандидата каждый раз, просто считаем, что:
Первое предпочтение

– 1 балл
Второе предпочтение – ½ балла
Третье предпочтение – 1/3 балла


n-ое предпочтение - 1/n балла.

Считаем баллы каждого кандидата.

Определяем победителя.
Подсчет БордаЧастный случай альтернативного голосования, применяемый в Науру Чтобы не искать «самого слабого» кандидата каждый раз, просто

Слайд 6Методы многокритериального выбора
Сегодня поговорим о том, как можно выбирать те

или иные решения. В следующий раз – как их можно

оценить.

Для государственного и муниципального управления важны оба данных процесса (самое простое и практичное понимание политического действия (процесса) – попытка договориться, какое общественное благо мы будем производить)

Методы могут использоваться не только при решении вопросов государственного значения, но и при решении личных вопросов. Но отличия, конечно же, есть (поговорим об этом в следующий раз, когда будем говорить об оценке альтернатив)

Как правило, методы выбора достаточно просты
Методы многокритериального выбораСегодня поговорим о том, как можно выбирать те или иные решения. В следующий раз –

Слайд 7Множество Парето (1). Графическая форма
Вспоминаем определение.

Те самые альтернативы, которые мы

называем «паретовскими» будут составлять Парето-множество.

Множество альтернатив, которое попарно не

доминируется друг другом, называется множеством Парето, в честь великого ученого XIX в. Вильфредо Парето.


Ограничение?
(больше 2 критериев – сложно визуально определить)

Множество Парето (1). Графическая формаВспоминаем определение.Те самые альтернативы, которые мы называем «паретовскими» будут составлять Парето-множество. Множество альтернатив,

Слайд 8Множество Парето (2). Возможные ситуации

В множество Парето входит ровно столько

вариантов, сколько необходимо включить в выбранное множество по условию данной

конкретной задачи (все нормально)

В множество Парето входит больше вариантов, чем требуется выбрать по условиям данной конкретной задачи (кого убирать?)

В множество Парето входит меньше вариантов, чем требуется выбрать по условиям данной конкретной задачи (где искать?)

Множество Парето (2). Возможные ситуацииВ множество Парето входит ровно столько вариантов, сколько необходимо включить в выбранное множество

Слайд 9Множество Парето (4). Возможные ситуации
Если первая ситуация – радуемся.

Если вторая

– используем альтернативные методы оценки.

Если третья – обрезаем множество. Вернемся

к первоначальной картинке:

Как вариант (вместо слоев) – надпороговые значения.

Множество Парето (4). Возможные ситуацииЕсли первая ситуация – радуемся.Если вторая – используем альтернативные методы оценки.Если третья –

Слайд 10Формула простой взвешенной суммы баллов

Формула простой взвешенной суммы баллов

Слайд 11Метод SMART

Упорядочить критерии по важности
Присвоить наиболее важному критерию оценку 100

баллов. Дать в баллах оценку каждому из критериев
Сложить полученные баллы.

Произвести нормировку весов критериев, разделив присвоенные баллы на сумму весов
Измерить значение каждой альтернативы по каждому из критериев по шкале от 0 до 100 баллов.
Определить общую оценку каждой альтернативы, используя формулу взвешенной суммы баллов (см. предыдущий слайд)
Выбрать как лучшую альтернативу, имеющую наибольшую общую оценку
Произвести оценку чувствительности результата к изменениям весов

Метод SMARTУпорядочить критерии по важностиПрисвоить наиболее важному критерию оценку 100 баллов. Дать в баллах оценку каждому из

Слайд 12Выбор по максимальной сумме критериальных оценок
Просто суммируем проставленные баллы по

критериям.
Никаких весов.

Выбор по максимальной сумме критериальных оценокПросто суммируем проставленные баллы по критериям. Никаких весов.

Слайд 13Выбор по близости к идеальной точке
Как искать расстояние между

2 точками?
Ищем евклидово расстояние!

Выбор по близости к идеальной точке Как искать расстояние между 2 точками?Ищем евклидово расстояние!

Слайд 14Выбор по дополнительному критерию

Выбор по дополнительному критерию

Слайд 15Многоугольник оценки
Еще один графический метод определения «лучшей» альтернативы.

Важно привести

к единой шкале для удобства восприятия!

Как определить лучшую альтернативу?

Сравнить площади

каждой альтернативы
Найти отношение площади каждой альтернативы к идеальной ситуации и сравнить


Многоугольник оценки Еще один графический метод определения «лучшей» альтернативы.Важно привести к единой шкале для удобства восприятия!Как определить

Слайд 16Благодарю за внимание!



Благодарю за внимание!

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика