Слайд 1
слайды к лекционному материалу
ФИЗИКА
1 часть
Слайд 2ОСНОВНЫЕ РАЗДЕЛЫ ОБЩЕЙ ФИЗИКИ
механика
термодинамика и молекулярная физика
электричество и магнетизм
оптика
атомная
физика
квантовая физика
ядерная физика
Слайд 3МЕХАНИКА
раздел физики, изучающий простейшую форму движения – механическое движение,
связанное с перемещением тела в пространстве и времени
Слайд 4МНОГООБРАЗИЕ ОБЪЕКТОВ ИЗУЧЕНИЯ МЕХАНИКИ
Слайд 5ДЕЛЕНИЯ МЕХАНИКИ
классическая (ньютонова) механика
- квантовая механика
- релятивистская механика
Слайд 6РАЗДЕЛЫ КЛАССИЧЕСКОЙ МЕХАНИКИ
СТАТИКА (изучает условия равновесия тел)
КИНЕМАТИКА (изучает способы
описания движений независимо от причин возникновения движений)
ДИНАМИКА (изучает движение тел
в связи с причинами возникновения движений)
Слайд 7ОСНОВНЫЕ ЗАДАЧИ КЛАССИЧЕСКОЙ (НЬЮТОНОВОЙ) МЕХАНИКИ
изучение всевозможных движений и обобщение полученных
результатов в виде законов
отыскание общих свойств, присущих любой системе
независимо от рода взаимодействий в системе
Слайд 8ОСНОВНЫЕ МОДЕЛИ МЕХАНИКИ
материальная точка (тело, форма и размер которого несущественны
в условиях данной задачи
абсолютно твердое тело (протяженное тело, расстояние между
двумя любыми точками которого всегда постоянно)
Слайд 9СИСТЕМА ОТСЧЕТА. СПОСОБЫ ОПИСАНИЯ ДВИЖЕНИЯ ТОЧКИ – ВЕКТОРНЫЙ и КООРДИНАТНЫЙ.
Слайд 10ОСНОВНЫЕ КИНЕМАТИЧЕСКИЕ ВЕЛИЧИНЫ
перемещение
мгновенная скорость
мгновенное ускорение
Слайд 11СКАЛЯРЫ И ВЕКТОРЫ. КООРДИНАТНОЕ РАЗЛОЖЕНИЕ КИНЕМАТИЧЕСКИХ ВЕЛИЧИН
координата
скорость
Слайд 12РАЗЛОЖЕНИЕ УСКОРЕНИЯ ПРИ КРИВОЛИНЕЙНОМ ДВИЖЕНИИ
Слайд 13ХАРАКТЕРИСТИКА ПРОСТЕЙШИХ ВИДОВ ДВИЖЕНИЯ
Прямолинейное равномерное
Прямолинейное равноускоренное
Прямолинейное равнозамедленное
Равномерное движение по окружности
Слайд 14ПРИМЕР. Движение тела, брошенного под углом к горизонту
Слайд 15ПРИНЦИП ОТНОСИТЕЛЬНОСТИ МЕХАНИЧЕСКОГО ДВИЖЕНИЯ
Движение тел можно описывать в различных системах
отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако
кинематические характеристики движения, такие как траектория, перемещение, скорость, в разных системах оказываются различными.
Слайд 16ПРИНЦИПЫ КИНЕМАТИКИ ТВЕРДОГО ТЕЛА
Поступательное движение твердого тела (сводится к прямолинейному
движению материальной точки)
Вращение вокруг неподвижной оси
Сложное движение = поступательное +
вращательное
Слайд 17КИНЕМАТИКА ВРАЩЕНИЯ ВОКРУГ НЕПОДВИЖНОЙ ОСИ. СВЯЗЬ МЕЖДУ УГЛОВЫМИ И ЛИНЕЙНЫМИ
ВЕЛИЧИНАМИ
Слайд 18ОСНОВНЫЕ ПОНЯТИЯ ДИНАМИКИ
МАССА материальной точки – положительная скалярная величина, являющаяся
мерой инертности точки
СИЛА – причина механического движения, мера действия на
рассматриваемое тело со стороны других тел
Слайд 19ПРИНЦИП ОТНОСИТЕЛЬНОСТИ И ПРЕОБРАЗОВАНИЯ ГАЛИЛЕЯ
Все механические явления протекают одинаково во
всех инерциальных системах отсчета
x = x' + υt, y = y', z = z', t = t'
Слайд 20НЬЮТОН, ИСААК (Newton, Isaac) (1642–1727), английский математик и естествоиспытатель, механик,
астроном и физик, основатель классической физики
Слайд 21КЛАССИЧЕСКАЯ МЕХАНИКА НЬЮТОНА
I ЗАКОН – ЗАКОН ИНЕРЦИИ
Существуют такие системы
отсчета, относительно которых изолированные поступательно движущиеся тела сохраняют свою скорость
неизменной по модулю и направлению.
Инерция - свойство тела сохранять свою скорость при отсутствии действия на него других тел
Слайд 22КЛАССИЧЕСКАЯ МЕХАНИКА НЬЮТОНА
II ЗАКОН – ОСНОВНОЙ ЗАКОН ДИНАМИКИ
где
- ускорение материальной точки
-
величина постоянной силы,
действующей на точку
- масса материальной точки
Слайд 23КЛАССИЧЕСКАЯ МЕХАНИКА НЬЮТОНА
III ЗАКОН – РОЖДЕНИЕ СИЛ ПАРАМИ
Тела действуют
друг на друга с силами, равными по модулю и противоположными
по направлению
Слайд 24ПРИНЦИП ДЕТЕРМИНИЗМА П.ЛАПЛАСА
ДЕТЕРМИНИЗМ (от англ. determine - определять) – учение
о всеобщей причинной обусловленности и закономерности явлений
Случайность полностью исключена. Все
в мире предопределено предшествующими состояниями
Слайд 25ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ. ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА
Импульс мат. точки –
это векторная величина:
Система материальных точек имеет импульс:
Импульс замкнутой системы
материальных точек не изменяется во времени
Слайд 26Иллюстрация закона сохранения импульса
Слайд 27РАБОТА И МЕХАНИЧЕСКАЯ ЭНЕРГИЯ
Энергией называется скалярная физическая величина, являющейся
общей мерой различных форм движения материи. Энергия системы количественно характеризует
последнюю в отношении возможных в ней превращений движения.
Слайд 28ВИДЫ (ФОРМЫ) ЭНЕРГИИ
– механическая;
– внутренняя;
– электромагнитная;
– ядерная и т.д.
Слайд 29КИНЕТИЧЕСКАЯ ЭНЕРГИЯ
Физическая величина, равная половине произведения массы тела на квадрат
его скорости, называется кинетической энергией тела:
Свойство. Аддитивность кинетической энергии
Слайд 30ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ
это часть энергии механической системы, зависящая только от ее
конфигурации и от их положения во внешнем потенциальном поле.
Пример 1:
потенциальная энергия тела в поле тяготения:
Пример 2: потенциальная энергия упругой деформации пружины:
Слайд 31ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ. ЗАКОН СОХРАНЕНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ
Механическая энергия системы
это сумма кинетической и потенциальной энергии:
Консервативная система: все действующие на
нее непотенциальные силы работы не совершают, а все внешние потенциальные силы стационарны
ПРИ ДВИЖЕНИИ КОНСЕРВАТИВНОЙ СИСТЕМЫ ЕЕ МЕХАНИЧЕСКАЯ ЭНЕРГИЯ НЕ ИЗМЕНЯЕТСЯ
Слайд 32МЕХАНИЧЕСКАЯ РАБОТА
Работой силы F на бесконечно малом перемещении ds называется
скалярная величина
в случае конечного перемещения:
Слайд 33ГРАФИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ РАБОТЫ
Слайд 34ОСОБЕННОСТИ ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ
Момент силы относительно неподвижной точки
Главный момент
системы сил
Слайд 35ОСОБЕННОСТИ ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ
Момент импульса материальной точки относительно неподвижной точки
Момент импульса системы точек
Слайд 36ОСОБЕННОСТИ ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ
Момент инерции материальной точки относительно неподвижной оси
Момент импульса системы материальных точек
Слайд 37МОМЕНТ ИНЕРЦИИ ТРЕРДОГО ТЕЛА относительно неподвижной оси
Слайд 38ТЕОРЕМА ГЮЙГЕНСА-ШТЕЙНЕРА
Момент инерции тела относительно какой либо оси равен моменту
инерции его относительно параллельной оси, проходящей через центр масс, сложенному
с величиной
где а – расстояние между осями
Слайд 39СООТНОШЕНИЕ ДИНАМИЧЕСКИХ ВЕЛИЧИН
Слайд 40ЗАКОН СОХРАНЕНИЯ МОМЕНТА ИМПУЛЬСА
для точки (системы точек)
для абсолютно твердого
тела
Слайд 41Иллюстрация закона сохранения момента импульса
Слайд 43СЛЕДСТВИЯ ПРЕОБРАЗОВАНИЙ ЛОРЕНЦА
- РЕЛЯТИВИСТСКОЕ ЗАМЕДЛЕНИЕ ВРЕМЕНИ
- РЕЛЯТИВИСТСКОЕ СОКРАЩЕНИЕ ДЛИНЫ
Слайд 45ЗАКОН ВЗАИМОСВЯЗИ МАССЫ И ЭНЕРГИИ
МАССА тела характеризует его инертность и
способность к гравитационному взаимодействию
ЭНЕРГИЯ способна превращаться из одной формы в
другую
Выражение внутренней сущности материи:
E = mc2
Слайд 46ТЕРМОДИНАМИКА И МОЛЕКУЛЯРНАЯ ФИЗИКА
Слайд 47ДВА ПОДХОДА К ИССЛЕДОВАНИЮ ТЕПЛОВЫХ ЯВЛЕНИЙ
Термодинамика – это
наука о тепловых явлениях. Термодинамика исходит из наиболее общих закономерностей
тепловых процессов и свойств макроскопических систем. Выводы термодинамики опираются на совокупность опытных фактов и не зависят от наших знаний о внутреннем устройстве вещества.
Слайд 48ДВА ПОДХОДА К ИССЛЕДОВАНИЮ ТЕПЛОВЫХ ЯВЛЕНИЙ
Молекулярно-кинетической теорией называют
учение о строении и свойствах вещества на основе представления о
существовании атомов и молекул как наименьших частиц химического вещества
Слайд 49ОПИСАНИЕ ТЕРМОДИНАМИЧЕСКИХ СИСТЕМ
термодинамические системы – макроскопические объекты (тела и поля),
которые могут обмениваться энергией как друг с другом, так и
с внешней средой
основные макроскопические параметры ТС:
P – давление
V – объем
T - температура
Слайд 50РАВНОВЕСИЕ и ПРОЦЕСС
Термодинамическое равновесие характеризуется постоянством всех макроскопических параметров системы
При
изменении одного или нескольких параметров система переходит в новое состояние
равновесия
Термодинамическое уравнение состояния:P = f (V, T)
Слайд 51ИДЕАЛЬНЫЙ ГАЗ
идеальный газ – это газ, взаимодействие между молекулами которого
пренебрежимо мало. Многие газы при нормальных условиях хорошо описываются такой
моделью
уравнение состояния идеального газа:
Слайд 52ИЗОПРОЦЕССЫ
- это процессы, при протекании которых сохраняется хотя бы один
из макроскопических параметров
изотермическим процессом называют квазистатический процесс, протекающий при постоянной
температуре T.
Слайд 57БАЗОВЫЕ ПОЛОЖЕНИЯ МКТ
Все вещества – жидкие, твердые и газообразные –
образованы из мельчайших частиц – молекул, которые сами состоят из
атомов («элементарных молекул»).
Атомы и молекулы находятся в непрерывном хаотическом движении.
Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.
Слайд 58ВНУТРЕННЯЯ ЭНЕРГИЯ
все макроскопические тела обладают энергией, заключенной внутри самих этих
тел
внутренняя энергия вещества складывается из кинетической энергии всех атомов
и молекул и потенциальной энергии их взаимодействия друг с другом
Слайд 59ВНУТРЕННЯЯ ЭНЕРГИЯ
является однозначной функций состояния термодинамической системы
U = f (V,
T)
внутренняя энергия идеального газа зависит только от температуры
Внутренняя
энергия одноатомного идеального газа:
Слайд 60КОЛИЧЕСТВО ТЕПЛОТЫ И РАБОТА
Количеством теплоты Q, полученной телом, называют изменение
внутренней энергии тела в результате теплообмена.
работа газа определяется выражением
Слайд 61ГРАФИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ РАБОТЫ
Слайд 63ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ
Количество теплоты, полученное системой, идет на изменение ее
внутренней энергии и совершение работы над внешними телами.
Слайд 64ТЕПЛОЕМКОСТЬ
Если в результате теплообмена телу передается некоторое количество теплоты, то
внутренняя энергия тела и его температура изменяются.
Отношение количества теплоты
dQ, переданной телу к вызванному этим приращению температуры dT называют теплоемкостью вещества C
Слайд 65ВИДЫ ТЕПЛОЕМКОСТИ
Удельная теплоемкость относится к массе вещества (Дж/кг)
Молярная теплоемкость относится
к количеству вещества (Дж/моль)
По отношению к процессу:
Сp –
теплоемкость при постоянном давлении
Сv - теплоемкость при постоянном объеме
Слайд 66КЛАССИЧЕСКАЯ ТЕОРИЯ ТЕПЛОЕМКОСТИ (Л. Больцман)
Теорема о равномерном распределении энергии по
степеням свободы
Если система молекул находится в тепловом равновесии
при температуре T, то средняя кинетическая энергия равномерно распределена между всеми степенями свободы и для каждой степени свободы молекулы она равна kT/2
Слайд 69ЦИКЛИЧЕСКИЕ ПРОЦЕССЫ
- это такая совокупность термодинамических процессов, в результате
которых система возвращается в исходное состояние
Слайд 71ОБРАТИМЫЕ ПРОЦЕССЫ
Обратимыми процессами называют процессы перехода системы из одного равновесного
состояния в другое, которые можно провести в обратном направлении через
ту же последовательность промежуточных равновесных состояний. При этом сама система и окружающие тела возвращаются к исходному состоянию
Слайд 72ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ
Невозможен процесс, единственным результатом которого была бы передача
энергии путем теплообмена от тела с низкой температурой к телу
с более высокой температурой (Клаузиус)
коэффициент полезного действия машины, работающей по циклу Карно, максимален
Слайд 73ЭНТРОПИЯ
это функция состояния термодинамической системы, изменение которой в обратимом процессе
при переходе из одного равновесного состояния в другой равно
Слайд 74ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ (закон неубывания энтропии)
При любых процессах, протекающих в
термодинамических изолированных системах, энтропия либо остается неизменной, либо увеличивается.
Вероятностная трактовка
2-го начала термодинамики:
S = k* lnw
Слайд 75ЭЛЕКТРОДИНАМИКА
Электрический заряд – это физическая величина, характеризующая свойство частиц или
тел вступать в электромагнитные силовые взаимодействия
Существует два рода электрических
зарядов, условно названных положительными и отрицательными
Слайд 77ЗАКОН СОХРАНЕНИЯ ЭЛЕКТРИЧЕСКОГО ЗАРЯДА
в изолированной системе алгебраическая сумма зарядов всех
тел остается постоянной
Слайд 78ЗАКОН КУЛОНА
Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов
и обратно пропорциональны квадрату расстояния между ними:
Слайд 79ЭЛЕКТРИЧЕСКОЕ ПОЛЕ
каждое заряженное тело создает в окружающем пространстве электрическое поле.
напряженность электрического поля – векторная физическая величина равная
Слайд 80СИЛОВЫЕ ЛИНИИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ
Слайд 82ПОНЯТИЕ ПОТОКА ВЕКТОРА ЧЕРЕЗ ПОВЕРХНОСТЬ
Слайд 83ТЕОРЕМА ОСТРОГРАДСКОГО-ГАУССА
Поток вектора напряженности электростатического поля через произвольную замкнутую
поверхность определяется алгебраической суммой зарядов, расположенных внутри этой поверхности:
Слайд 84ПОТЕНЦИАЛ ЭЛЕКТРИЧЕСКОГО ПОЛЯ
равен работе, которую совершают электрические силы при удалении
единичного положительного заряда из данной точки в бесконечность
Слайд 85СВЯЗЬ НАПРЯЖЕННОСТИ И ПОТЕНЦИАЛА
Слайд 86ПОТЕНЦИАЛ
Потенциал точечного заряда
Принцип суперпозиции потенциалов
Слайд 87ЭЛЕКТРОСТАТИЧЕСКАЯ ИНДУКЦИЯ. МЕТАЛЛ в ЭЛЕКТРИЧЕСКОМ ПОЛЕ
Слайд 89ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ
физическая величина, равная отношению модуля напряженности
внешнего электрического поля в вакууме к модулю напряженности полного
поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества.
Слайд 90НАПРЯЖЕННОСТЬ И ПОТЕНЦИАЛ ТОЧЕЧНОГО ЗАРЯДА В ДИЭЛЕКТРИКЕ
Слайд 91ЭЛЕКТРИЧЕСКАЯ ЕМКОСТЬ
Электроемкостью системы из двух проводников называется физическая
величина, определяемая как отношение заряда q одного из проводников к
разности потенциалов Δφ между ними
Слайд 93ПАРАЛЛЕЛЬНОЕ И ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ КОНДЕНСАТОРОВ
Слайд 94ЭНЕРГИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ
энергия поля конденсатора
энергия электрического поля
объемная плотность энергии поля
Слайд 95ЭЛЕКТРИЧЕСКИЙ ТОК
упорядоченное движение электронов в металлическом проводнике и
ток
Слайд 96ЗАКОН ОМА (для участка цепи)
сила тока I, текущего
по однородному металлическому проводнику (т. е. проводнику, в котором не действуют
сторонние силы), пропорциональна напряжению U на концах проводника:
Слайд 97ЭЛЕКТРОДВИЖУЩАЯ СИЛА
физическая величина, равная отношению работы сторонних сил
при перемещении заряда q от отрицательного полюса источника тока к
положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):
Слайд 98ЗАКОН ОМА ДЛЯ ПОЛНОЙ (ЗАМКНУТОЙ) ЦЕПИ
Слайд 99ВКЛЮЧЕНИЕ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ В ЭЛЕКТРИЧЕСКУЮ ЦЕПЬ
Слайд 100ПАРАЛЛЕЛЬНОЕ И ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ ПРОВОДНИКОВ
Слайд 101ПРАВИЛА КИРХГОФА
1 правило: алгебраическая сумма сил токов для каждого узла
в разветвленной цепи равна нулю (следствие закона сохранения заряда)
2 правило:
алгебраическая сумма произведений сопротивления каждого из участков любого замкнутого контура разветвленной цепи постоянного тока на силу тока на этом участке равна алгебраической сумме ЭДС вдоль этого контура.