Разделы презентаций


Неевклидова геометрия

Мы выбрали эту тему так как она нас очень заинтересовала тем , что геометрия Лобачевского очень полезна в современном мире, и мы хотим немного рассказать вам о ней:Любая теория современной науки

Слайды и текст этой презентации

Слайд 1

Работу выполнили
ученики 7 «А» класса:
Никитин Андрей ,
Шамоян Максим,
Артем Федотов.

Неевклидова геометрия.


Слайд 2Мы выбрали эту тему так как она нас очень заинтересовала

тем , что геометрия Лобачевского очень полезна в современном мире,

и мы хотим немного рассказать вам о ней:
Любая теория современной науки считается единственно верной, пока не создана следующая. Это своеобразная аксиома развития науки.
Этот факт многократно подтверждался. Физика Ньютона переросла в релятивистскую физику, а та в квантовую. Теория флогистона стала химией, а самозарождение мышей из грязи обернулось биологией. Такова судьба всех наук, и нельзя сказать, что сегодняшнее открытие через двадцать лет не окажется грандиозной ошибкой. Но это тоже нормально – ещё Ломоносов говорил: «Алхимия – мать химии: дочь не виновата, что её мать глуповата».
Участь эта не обошла и геометрию. Традиционная Евклидова геометрия переросла в неевклидову, геометрию Лобачевского. Именно этому разделу математики, его истории и особенностям и посвящен этот проект.

Введение

Мы выбрали эту тему так как она нас очень заинтересовала тем , что геометрия Лобачевского очень полезна

Слайд 3Иногда говорят, что в геометрии Лобачевского параллельные прямые пересекаются в

бесконечности. Но это не совсем так. Есть только немного другое

свойство параллельности: через одну точку вне прямой можно провести бесконечно много прямых, параллельных данной. Это видно на рисунке 1. Причем параллельность сохраняется только в сторону уменьшения расстояния между прямыми. Этот, казалось бы, простой факт доказывается, что сумма углов треугольника равна 180о? Классическое доказательство приведено на рисунке 2. Используется свойство углов при накрест лежащих прямых, и выходит, что 1+2+3=180о. Но так как в геометрии Лобачевского параллельность сохраняется только в одном направлении, то для нахождения суммы углов треугольника*, то нужно провести две прямые, параллельные данной в разные стороны. Что получается, видно на рисунке 3. Понятно, что теперь сумма углов треугольника меньше 180о. Эта разница была названа Лобачевским дефектом треугольника.
Одними из важных объектов на плоскости Лобачевского являются пучки прямых. Но чтобы описать эти пучки, сначала надо уяснить, что в плоскости Лобачевского есть три типа расположения прямых: прямые или параллельны, или пересекаются, или являются , меняет всю геометрию. Как, например, в геометрии Евклида .

Краткое описание геометрии Лобачевского.

Иногда говорят, что в геометрии Лобачевского параллельные прямые пересекаются в бесконечности. Но это не совсем так. Есть

Слайд 4Несмотря на все кажущиеся странности, геометрия Лобачевского является настоящей геометрией

нашего мира, и Евклидова является только её составной частью. Но

в пределах ежедневных измерений Евклидова геометрия дает исчезающе малые ошибки, и мы пользуемся именно ею.

расходящимися.
* Здесь и далее подразумевается геометрия Лобачевского, если нет оговорки на геометрию Евклида.
Так вот, первый вид пучков образован прямыми, имеющими общую точку – центр пучка (рис. 4а). Пучок расходящихся прямых – это перпендикуляры к одной прямой – оси пучка (рис. 4б). Из этого определения выходит интересное и, казалось бы, абсурдное утверждение, что два перпендикуляра к одной прямой непараллельны, и отличие от геометрии Евклида.
И, наконец, пучок, образуемый прямыми, параллельными данной прямой в заданном направлении (рис. 4в).

Несмотря на все кажущиеся странности, геометрия Лобачевского является настоящей геометрией нашего мира, и Евклидова является только её

Слайд 5Когда Евклид формулировал пятый постулат, вряд ли он знал, какую

бурю тот вызовет. Когда Лобачевский отказался от пятого постулата, он

не знал, что его «воображаемая геометрия» на поверку окажется реальной.
Нельзя сказать, что неевклидова геометрия единственно правильна. На данный момент к ней нет никаких претензий. Но, может быть, через много лет она устареет – или это произойдет быстрее? Так или иначе, но наука никогда не будет стоять на месте, и когда – нибудь и этот проект окажется макулатурой.
Но думаю, что этого времени он успеет исполнить свое предназначение – рассказать и заинтересовать читателя настоящей геометрией нашего мира. Именно из-за популярного характера в нем нет ни строгих доказательств, ни полного описания неевклидовой геометрии. Но для поверхностного ознакомления с ней он вполне годен.

Заключение

Когда Евклид формулировал пятый постулат, вряд ли он знал, какую бурю тот вызовет. Когда Лобачевский отказался от

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика