a
b
c
90°
Рис. 1
Лемма:
Доказательство:
Пусть a || b и a ⊥ b. Докажем, что b ⊥ c. Через произвольную т. М пространства, не лежащую на данных прямых, проведем прямые МА и МС, параллельные соответственно прямым a и c. Так как a ⊥ c, то AMC = 90°.
По условию b || а, а по построению а || МА, поэтому b || МА. Итак, прямые b и с параллельны соответственно прямым МА и МС, угол между которыми равен 90°. Это означает, что угол между прямыми b и с также равен 90°, т. е. b ⊥ c.
Рис. 2
b
a
C
A
M
c
α
a
Рис. 3
Рассмотрим две параллельные прямые а и b и плоскость α, такую, что а⊥α. Докажем, что и b ⊥ α.
Проведем какую-нибудь прямую х в плоскости α (рисунок 4). Так как а ⊥ α, то а ⊥ х. По лемме о перпендикулярности двух параллельных прямых к третьей b ⊥ х. Таким образом, прямая b перпендикулярна к любой прямой, лежащей в плоскости α, т.е. b ⊥ α.
Доказательство:
Рис. 4
α
a
b
x
Доказательство:
Рис. 5, а
α
a
q
Рис. 5, b
α
a
M
c
b
b
Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть