Разделы презентаций


Пирамида, вписанная в конус

Содержание

Упражнение 1Найдите сторону основания правильной треугольной пирамиды, вписанной в конус, радиус основания которого равен 1.

Слайды и текст этой презентации

Слайд 1Пирамида, вписанная в конус
Пирамида называется вписанной в конус, если ее

основание вписано в основание конуса, а вершина совпадает с вершиной

конуса. При этом конус называется описанным около пирамиды.
Около пирамиды можно описать конус тогда и только тогда, когда около ее основания можно описать окружность.
Пирамида, вписанная в конусПирамида называется вписанной в конус, если ее основание вписано в основание конуса, а вершина

Слайд 2Упражнение 1
Найдите сторону основания правильной треугольной пирамиды, вписанной в конус,

радиус основания которого равен 1.

Упражнение 1Найдите сторону основания правильной треугольной пирамиды, вписанной в конус, радиус основания которого равен 1.

Слайд 3Упражнение 2
Найдите сторону основания правильной четырехугольной пирамиды, вписанной в конус,

радиус основания которого равен 1.

Упражнение 2Найдите сторону основания правильной четырехугольной пирамиды, вписанной в конус, радиус основания которого равен 1.

Слайд 4Упражнение 3
Найдите сторону основания правильной шестиугольной пирамиды, вписанной в конус,

радиус основания которого равен 1.
Ответ: 1.

Упражнение 3Найдите сторону основания правильной шестиугольной пирамиды, вписанной в конус, радиус основания которого равен 1. Ответ: 1.

Слайд 5Пирамида, описанная около конуса
Пирамида называется описанной около конуса, если ее

основание описано около основания конуса, а вершина совпадает с вершиной

конуса. При этом конус называется вписанным в пирамиду.
В пирамиду можно вписать конус тогда и только тогда, когда в ее основание можно вписать окружность.
Пирамида, описанная около конусаПирамида называется описанной около конуса, если ее основание описано около основания конуса, а вершина

Слайд 6Упражнение 1
Найдите сторону основания правильной треугольной пирамиды, описанной около конуса,

радиус основания которого равен 1.

Упражнение 1Найдите сторону основания правильной треугольной пирамиды, описанной около конуса, радиус основания которого равен 1.

Слайд 7Упражнение 2
Найдите сторону основания правильной четырехугольной пирамиды, описанной около конуса,

радиус основания которого равен 1.
Ответ: 2.

Упражнение 2Найдите сторону основания правильной четырехугольной пирамиды, описанной около конуса, радиус основания которого равен 1. Ответ: 2.

Слайд 8Упражнение 3
Найдите сторону основания правильной шестиугольной пирамиды, описанной около конуса,

радиус основания которого равен 1.

Упражнение 3Найдите сторону основания правильной шестиугольной пирамиды, описанной около конуса, радиус основания которого равен 1.

Слайд 9Сфера, вписанная в конус
Сфера называется вписанной в конус, если она

касается его основания и боковой поверхности (касается каждой образующей). При

этом конус называется описанным около сферы.

В любой конус (прямой, круговой) можно вписать сферу. Ее центр находится на высоте конуса, а радиус равен радиусу окружности, вписанной в треугольник, являющийся осевым сечением конуса.

Напомним, что радиус r окружности, вписанный в треугольник, находится по формуле
где S – площадь, p – полупериметр треугольника.

Сфера, вписанная в конусСфера называется вписанной в конус, если она касается его основания и боковой поверхности (касается

Слайд 10Упражнение 1
В конус, радиус основания которого равен 1, а образующая

равна 2, вписана сфера. Найдите ее радиус.

Упражнение 1В конус, радиус основания которого равен 1, а образующая равна 2, вписана сфера. Найдите ее радиус.

Слайд 11Упражнение 2
В конус, радиус основания которого равен 2, вписана сфера

радиуса 1. Найдите высоту конуса.

Упражнение 2В конус, радиус основания которого равен 2, вписана сфера радиуса 1. Найдите высоту конуса.

Слайд 12Упражнение 3
Радиус основания конуса равен 1. Образующая наклонена к плоскости

основания под углом 45о. Найдите радиус вписанной сферы.

Упражнение 3Радиус основания конуса равен 1. Образующая наклонена к плоскости основания под углом 45о. Найдите радиус вписанной

Слайд 13Упражнение 4
Высота конуса равна 8, образующая 10. Найдите радиус вписанной

сферы.

Упражнение 4Высота конуса равна 8, образующая 10. Найдите радиус вписанной сферы.

Слайд 14Упражнение 5
Можно ли вписать сферу в наклонный конус?
Ответ: Нет.

Упражнение 5Можно ли вписать сферу в наклонный конус?Ответ: Нет.

Слайд 15Сфера, вписанная в усеченный конус
Сфера называется вписанной в усеченный конус,

если она касается его оснований и боковой поверхности (касается каждой

образующей). При этом усеченный конус называется описанным около сферы.

В усеченный конус можно вписать сферу, если в его осевое сечение можно вписать окружность. Радиус этой окружности будет равен радиусу вписанной сферы.

Сфера, вписанная в усеченный конусСфера называется вписанной в усеченный конус, если она касается его оснований и боковой

Слайд 16Упражнение 1
В усеченный конус, радиусы оснований которого равны 2 и

1, вписана сфера. Найдите радиус сферы и высоту усеченного конуса.

Упражнение 1В усеченный конус, радиусы оснований которого равны 2 и 1, вписана сфера. Найдите радиус сферы и

Слайд 17Упражнение 2
В усеченный конус, радиус одного основания которого равен 2,

вписана сфера радиуса 1. Найдите радиус второго основания.
Решение. Пусть A1O1=

2. Обозначим r = A2O2. Имеем: A1A2 = 2+r, A1C = 2 – r. По теореме Пифагора, имеет место равенство из которого следует, что выполняется равенство Решая полученное уравнение относительно r, находим
Упражнение 2В усеченный конус, радиус одного основания которого равен 2, вписана сфера радиуса 1. Найдите радиус второго

Слайд 18Упражнение 3
В усеченном конусе радиус большего основания равен 2, образующая

наклонена к плоскости основания под углом 60о. Найдите радиус вписанной

сферы.
Упражнение 3В усеченном конусе радиус большего основания равен 2, образующая наклонена к плоскости основания под углом 60о.

Слайд 19Упражнение 4
Образующая усеченного конуса равна 2, площадь осевого сечения 3.

Найдите радиус вписанной сферы.

Упражнение 4Образующая усеченного конуса равна 2, площадь осевого сечения 3. Найдите радиус вписанной сферы.

Слайд 20Упражнение 5
Можно ли вписать сферу в усеченный наклонный конус.
Ответ: Нет.

Упражнение 5Можно ли вписать сферу в усеченный наклонный конус.Ответ: Нет.

Слайд 21Сфера, описанная около конуса
Сфера называется описанной около конуса, если вершина

и окружность основания конуса лежат на сфере. При этом конус

называется вписанным в сферу.

Около любого конуса (прямого, кругового) можно описать сферу. Ее центр находится на высоте конуса, а радиус равен радиусу окружности, описанной около треугольника, являющимся осевым сечением конуса.

Напомним, что радиус R окружности, описанной около треугольника, находится по формуле
где S – площадь, a, b, c – стороны треугольника.

Сфера, описанная около конусаСфера называется описанной около конуса, если вершина и окружность основания конуса лежат на сфере.

Слайд 22Упражнение 1
Около конуса, радиус основания которого равен 1, а образующая

равна 2, описана сфера. Найдите ее радиус.

Упражнение 1Около конуса, радиус основания которого равен 1, а образующая равна 2, описана сфера. Найдите ее радиус.

Слайд 23Упражнение 2
Около конуса, радиус основания которого равен 4, описана сфера

радиуса 5. Найдите высоту h конуса.

Упражнение 2Около конуса, радиус основания которого равен 4, описана сфера радиуса 5. Найдите высоту h конуса.

Слайд 24Упражнение 3
Радиус основания конуса равен 1. Образующая наклонена к плоскости

основания под углом 45о. Найдите радиус описанной сферы.

Упражнение 3Радиус основания конуса равен 1. Образующая наклонена к плоскости основания под углом 45о. Найдите радиус описанной

Слайд 25Упражнение 4
Высота конуса равна 8, образующая 10. Найдите радиус описанной

сферы.

Упражнение 4Высота конуса равна 8, образующая 10. Найдите радиус описанной сферы.

Слайд 26Упражнение 5
Можно ли описать сферу около наклонного конуса?

Упражнение 5Можно ли описать сферу около наклонного конуса?

Слайд 27Сфера, описанная около усеченного конуса
Сфера называется описанной около усеченного конуса,

если окружности оснований усеченного конуса лежат на сфере. При этом

усеченный конус называется вписанным в сферу.

Около усеченного конуса можно описать сферу, если около его осевого сечения можно описать окружность. Радиус этой окружности будет равен радиусу описанной сферы.

Сфера, описанная около усеченного конусаСфера называется описанной около усеченного конуса, если окружности оснований усеченного конуса лежат на

Слайд 28Упражнение 1
Около усеченного конуса, радиусы оснований которого равны 2 и

1, а образующая равна 2, описана сфера. Найдите ее радиус.

Упражнение 1Около усеченного конуса, радиусы оснований которого равны 2 и 1, а образующая равна 2, описана сфера.

Слайд 29Упражнение 2
Радиус меньшего основания усеченного конуса равен 1, образующая равна

2 и составляет угол 45о с плоскостью другого основания. Найдите

радиус описанной сферы.
Упражнение 2Радиус меньшего основания усеченного конуса равен 1, образующая равна 2 и составляет угол 45о с плоскостью

Слайд 30Упражнение 3
Радиус одного основания усеченного конуса равен 4, высота 7,

радиус описанной сферы 5. Найдите радиус второго основания усеченного конуса.


Упражнение 3Радиус одного основания усеченного конуса равен 4, высота 7, радиус описанной сферы 5. Найдите радиус второго

Слайд 31Упражнение 4
Найдите радиус сферы, описанной около усеченного конуса, радиусы оснований

которого равны 2 и 4, а высота равна 5.

Упражнение 4Найдите радиус сферы, описанной около усеченного конуса, радиусы оснований которого равны 2 и 4, а высота

Слайд 32Упражнение 5
Можно ли описать сферу около усеченного наклонного конуса.
Ответ: Нет.

Упражнение 5Можно ли описать сферу около усеченного наклонного конуса.Ответ: Нет.

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика