Разделы презентаций


Вычисление объёмов геометрических тел с помощью определённого интеграла

Содержание

1612 г. Австрия город Линц.

Слайды и текст этой презентации

Слайд 1Вычисление объёмов геометрических тел с помощью определённого интеграла

Вычисление объёмов геометрических тел с помощью определённого интеграла

Слайд 21612 г.
Австрия
город Линц.

1612 г. Австрия город Линц.

Слайд 3Иоганн Кеплер
(1571 – 1630)
«Новая
стереометрия
винных бочек»,
1615 г.

Иоганн Кеплер(1571 – 1630)«Новая стереометрия винных бочек», 1615 г.

Слайд 4«Сказка о царе Салтане, о сыне его славном и могучем

богатыре князе Гвидоне Салтановиче и о прекрасной царевне Лебеде»
И привез

гонец хмельной
В тот же день приказ такой:
«Царь велит своим боярам,
Времени не тратя даром,
И царицу и приплод
Тайно бросить в бездну вод».
Делать нечего: бояре,
Потужив о государе
И царице молодой,
В спальню к ней пришли толпой.
Объявили царску волю –
Ей и сыну злую долю,
Прочитали вслух указ,
И царицу в тот же час
В бочку с сыном посадили,
Засмолили, покатили
И пустили в окиян –
Так велел-де царь Салтан.

«Сказка о царе Салтане, о сыне его славном и могучем богатыре князе Гвидоне Салтановиче и о прекрасной

Слайд 5Проблема:
Могли ли поместиться Царевна с сыном в бочке, если радиус

её основания 30 см, максимальная ширина – 80 см, а

высота бочки - 1 метр?
Проблема:	Могли ли поместиться Царевна с сыном в бочке, если радиус её основания 30 см, максимальная ширина –

Слайд 6Если функция f(x) непрерывна на промежутке I числовой оси, содержащей

точки х=а и х=b, то разность значений F(b)-F(a) (где F(x)

- первообразная f(x) на I) называется определенным интегралом от функции f(x) от a до b.

формула Ньютона-Лейбница.

Если функция f(x) непрерывна на промежутке I числовой оси, содержащей точки х=а и х=b, то разность значений

Слайд 7Вычисление объёмов тел.
1. Заключаем тело Т между двумя параллельными плоскостями.
2.

Вводим систему координат так, что ось ОХ перпендикулярна плоскостям.
3.

Проводим плоскость Ф(х) параллельно плоскостям через точку с абсциссой х.
4. Определяем вид сечения и выражаем площадь через функцию S(х).
5. Проверяем, является ли функция S(х) непрерывной на [a;b].

Вычисление объёмов тел.1. Заключаем тело Т между двумя параллельными плоскостями.2. Вводим систему координат так, что ось ОХ

Слайд 86. Разбиваем [a;b] на n - равных отрезков точками а

= х0, х1, х2, …хn=b
и проводим через хi плоскости перпендикулярно

ОХ.
7. Плоскости разбивают тело Т на n- тел Т1, Т2, Т3,... Тn с основаниями Ф(хi) и высотой Δxi= (b - a)/n

8. V≈Vn= (S(x1) + S(x2) +…+ S(xn) )Δxi= =(S(x1) + S(x2) +…+ S(xn))(b - a)/n. При n →∞, Vn→V, поэтому
но 9.

6. Разбиваем [a;b] на n - равных отрезков точками а = х0, х1, х2, …хn=bи проводим через

Слайд 9Задача 1.Найти объём наклонной треугольной призмы с основанием S и

высотой h.
1. Введём ось ОХ перпендикулярно основаниям призмы.
2. (АВС)∩OX=a, a=0,

(A1B1C1) ∩ OX=b, b=h

3. Проведём плоскость перпендикулярно ОХ через точку с абсциссой х.
А2В2С2-треугольник, равный основаниям.
Площадь А2В2С2 равна S.

Ответ: V=Sh

4. S(x) непрерывна на [0;h]

Задача 1.Найти объём наклонной треугольной призмы с основанием S и высотой h.1. Введём ось ОХ перпендикулярно основаниям

Слайд 10АЛГОРИТМ ВЫЧИСЛЕНИЯ ОБЪЁМОВ ГЕОМЕТРИЧЕСКИХ ТЕЛ С ПОМОЩЬЮ ОПРЕДЕЛЁННОГО ИНТЕГРАЛА.
1. Ввести

систему координат так, что ось ОХ перпендикулярна

основанию геометрического тела.
2. Найти пределы интегрирования а и b.
3. Провести сечение плоскостью перпендикулярно оси ОХ через точку с абсциссой х.
Определить вид сечения, задать формулой его площадь как функцию S(X).
4. Проверить непрерывность функции S(X) на [a;b].
5.

АЛГОРИТМ ВЫЧИСЛЕНИЯ ОБЪЁМОВ ГЕОМЕТРИЧЕСКИХ ТЕЛ С ПОМОЩЬЮ ОПРЕДЕЛЁННОГО ИНТЕГРАЛА.1. Ввести систему координат так, что ось ОХ

Слайд 11Задания для групп
Группа № 1
Группа № 2
Группа № 3
Группа №

4
Группа № 5
Группа № 6

Задания для группГруппа № 1Группа № 2Группа № 3Группа № 4Группа № 5Группа № 6

Слайд 12Задачи для самостоятельного решения.

Задачи  для  самостоятельного решения.

Слайд 13Металлический шар радиусом 100мм надо перелить в цилиндр, высота которого

равна 100мм. Найдите длину радиуса основания цилиндра.
Стаканчик для мороженного конической

формы имеет 12см глубину и 5см по диаметру верхней части. На него сверху положили две ложки мороженного в виде полушарий диаметра 5см. Переполнит ли мороженное стаканчик если позволить ему растаять.
Инженер, рост которого 180см пришел рассмотреть новую сферическую цистерну для хранения воды. Он забрался в пустую цистерну, и, когда он поднялся на место, находящееся в 5м 40см над точкой, в которой цистерна упирается на землю, его голова коснулась верхнего края цистерны. Зная, что город потребляет в час 40тысяч литров воды, он немедленно рассчитал, на сколько часов может хватить полной цистерны. Как он это сделал и как он получил результат.
На полке в магазине стоят две банки земляничного варенья одного и того же сорта. Одна банка в 2 раза выше другой, но зато её диаметр в 2 раза меньше. Высокая банка стоит 23 цента, а низкая 43 цента. Какую купить выгоднее?
Основание прямого кругового конуса имеет диаметр 12 см, а высота конуса равна 12см. Конус наполнили водой, затем в конус опустили шар так, что он оперся на стенки конуса. над водой при этом оказалось ровно половина шара. Сколько воды осталось в конусе после того, как шар был вынут?
Металлический шар радиусом 100мм надо перелить в цилиндр, высота которого равна 100мм. Найдите длину радиуса основания цилиндра.Стаканчик

Слайд 14Проблема:
Могли ли поместиться Царевна с сыном в бочке, если радиус

её основания 30 см, максимальная ширина – 80 см, а

высота бочки - 1 метр?
Проблема:	Могли ли поместиться Царевна с сыном в бочке, если радиус её основания 30 см, максимальная ширина –

Слайд 15Итоги урока
С помощью каких формул можно найти объёмы геометрических тел:

Итоги урокаС помощью каких формул можно найти объёмы геометрических тел:

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика