Разделы презентаций


ДИФРАКЦИЯ света

Содержание

Дифракция– это всякое уклонение от прямолинейного распространения света, если оно не может быть истолковано как результат отражения, преломления или изгибания световых лучей в средах с непрерывно меняющимся показателем преломления. 1.

Слайды и текст этой презентации

Слайд 1Дифракция света.
Основные эксперименты.
http://www.youtube.com/watch?v=c7m_MpLFJXY
Учебный фильм по интерференции
http://www.youtube.com/watch?v=SV3nlDWJBIs
Учебный фильм по дифракции

Дифракция света.Основные эксперименты.http://www.youtube.com/watch?v=c7m_MpLFJXYУчебный фильм по интерференцииhttp://www.youtube.com/watch?v=SV3nlDWJBIsУчебный фильм по дифракции

Слайд 4Дифракция– это всякое уклонение от прямолинейного распространения света, если оно

не может быть истолковано как результат отражения, преломления или изгибания

световых лучей в средах с непрерывно меняющимся показателем преломления.

1. Дифракция от точечного источника на диске.

«Пятно Пуассона»
Ж. Н. Делиль, 1715 г.,
О. Ж. Френель,
1818 г.

Пуассон «вывел из интегралов автора (Френеля) тот результат, что центр тени от круглого непрозрачного экрана должен быть таким же освещённым, как если бы экран не существовал» (Араго).

Дифракция– это всякое уклонение от прямолинейного распространения света, если оно не может быть истолковано как результат отражения,

Слайд 5 ЕСТЬ ЛИ В ЦЕНТРЕ ТЕНИ СВЕТЛОЕ ПЯТНО?
Симеон

Дени Пуассон
Огюстен Жан Френель
Доминик Франсуа Жан Араго

ЕСТЬ ЛИ В ЦЕНТРЕ ТЕНИ СВЕТЛОЕ  ПЯТНО?  Симеон Дени Пуассон Огюстен Жан Френель

Слайд 6Основные эксперименты по дифракции
Огюст Жан Френель
(1788 - 1827)
1. Заложил

основы теории дифракции света.
2. Исследовал поляризацию света («призма Френеля», представление

о естественном свете, как сумме плоско поляризованных волн, поперечность световых волн).
3. Заложил основы кристаллооптики.
4. Изучил рефракцию света атмосферой.
5. Разработал систему освещения маяков, в которой важнейшей частью была сконструированная Френелем ступенчатая линза.
Основные эксперименты по дифракцииОгюст Жан Френель(1788 - 1827) 1. Заложил основы теории дифракции света.2. Исследовал поляризацию света

Слайд 7Основные эксперименты по дифракции
Дифракция плоских волн.

(Йозеф Фраунгофер (1787 – 1826))

1.

Дифракция на щели (отверстии).
2. Дифракция на преграде (нити).
3. Дифракция на

периодической структуре (дифракционной решётке)
См. наши лабораторные работы

На сайте Варгина А.Н.
http://www.ph4s.ru/book_ph_optica.html
выложен сборник
В.В. Лосев, Т.В. Морозова. Оптика. Лабораторный практикум по курсу общей физики. 2008 год. Рассмотрена подробно теория с поясняющими графиками и рисунками лабораторных работ.
Основные эксперименты по дифракцииДифракция плоских волн.(Йозеф Фраунгофер (1787 – 1826))1. Дифракция на щели (отверстии).2. Дифракция на преграде

Слайд 8Принцип Гюйгенса-Френеля. Метод зон Френеля.

Принцип  Гюйгенса-Френеля.  Метод зон Френеля.

Слайд 9Принцип Гюйгенса - Френеля.
Построение огибающей волны:

Каждый элемент поверхности, которой

достигла в данный момент волна (т.е. каждая точка волнового фронта)

является центром вторичных волн, огибающая которых становится волновым фронтом в более поздний момент времени –принцип Гюйгенса

Распространение электромагнитных волн можно описывать с помощью принципа Гюйгенса – Френеля.

Принцип Гюйгенса - Френеля. Построение огибающей волны:Каждый элемент поверхности, которой достигла в данный момент волна (т.е. каждая

Слайд 10Принцип Гюйгенса лежит в основе некоторых приближенных методов решений задач

дифракции, так как позволяет получить волновой фронт в любой момент

времени. Гюйгенс считал, что отдельные вторичные волны слишком слабы и что заметное световое действие они производят только на их огибающей. Огибающая вторичных волн обрывается на границе геометрической тени. За границу геометрической тени проникнут только отдельные вторичные волны, действие которых по предположению Гюйгенса пренебрежимо мало. Пользуясь этим принципом, можно объяснить такие явления как распространение света от точечного источника, распространение светового пучка, отражение и преломление света.
Принцип Гюйгенса лежит в основе некоторых приближенных методов решений задач дифракции, так как позволяет получить волновой фронт

Слайд 11 Для объяснения огибания световыми волнами препятствий, Френель дополнил принцип Гюйгенса

представлением о том, что вторичные световые волны могут, как усиливать,

так и ослаблять друг друга. Иначе говоря, они могут интерферировать. Кроме того, Френель предположил, что амплитуда вторичной волны убывает с увеличением угла между нормалью к волновому фронту и направлением излучения вторичной волны.
Если световая волна в какой-то момент времени встречает на своем пути препятствие, то, пользуясь принципом Гюйгенса-Френеля, мы также можем найти волновой фронт в следующий момент времени, только в этом случае источником вторичных волн будет открытая часть волнового фронта, поскольку через непрозрачную часть препятствия излучение не проходит.
Для объяснения огибания световыми волнами препятствий, Френель дополнил принцип Гюйгенса представлением о том, что вторичные световые волны

Слайд 12Дифракция круговой волны на узкой щели в стенке, установленной в

кювете с жидкостью. Слева от стенки мы видим появление отражённой

волны, а справа от стенки возникает новая круговая волна с меньшей амплитудой, что соответствует принципу Гюйгенса-Френеля.
Дифракция круговой волны на узкой щели в стенке, установленной в кювете с жидкостью. Слева от стенки мы

Слайд 13Вид дифракционной картины, возникающей на экране (систему чередующихся светлых и

темных колец для случая, когда дифракция происходит на диске), можно

объяснить, лишь принимая во внимание интерференцию вторичных волн. Освещенность в каждой точке экрана (то есть вид дифракционной картины) есть результат общего (суммарного) действия вторичных волн. Поэтому, чтобы найти световое поле в каждой точке экрана, нужно просуммировать напряженности электрических полей от всех вторичных источников, приходящих в данную точку. Результат сложения волн зависит как от амплитуды. Освещенность в каждой точке экрана (то есть вид дифракционной картины) есть результат общего (суммарного) действия вторичных волн. Поэтому, чтобы найти световое поле в каждой точке экрана, нужно просуммировать напряженности электрических полей от всех вторичных источников, приходящих в данную точку. Результат сложения волн зависит как от амплитуды, так и от разности фаз. Френель предположил, что поскольку все вторичные источники возбуждаются одним и тем же источником, то разность фаз вторичных волн постоянна во времени (это означает, что расстояние между гребнем одной волны и гребнем другой по мере распространения волн не меняется с течением времени). Таким образом, эти сферические волны распространяются согласованно (т.е. являются когерентными).
Вид дифракционной картины, возникающей на экране (систему чередующихся светлых и темных колец для случая, когда дифракция происходит

Слайд 14 Вспомним как складывались две когерентные волны на примере механических волн

на поверхности жидкости. Мы видим, что в тех местах, где

встречаются гребни волн (разность фаз равна нулю), происходит усиление возмущения поверхности воды, а там, где гребень одной волны встречается с впадиной другой (волны находятся в противофазе), поверхность воды практически не будет возмущена. Таким образом, в результате сложения когерентных волн образуется интерференционная картина - устойчивое во времени распределение суммарной амплитуды.
Вспомним как складывались две когерентные волны на примере механических волн на поверхности жидкости. Мы видим, что в

Слайд 16 Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения,

порождающего вторичные сферические волны, а результирующее световое поле в каждой

точке пространства будет определяться интерференцией этих волн.
На этом принципе основан метод зон Френеля

Таким образом, принцип Гюйгенса-Френеля формулируется следующим образом:

Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое

Слайд 17 Используя принцип Гюйгенса-Френеля для объяснения дифракционной картины, необходимо учитывать ряд

обстоятельств. Во-первых, следует считать, что вторичные источники заполняют поверхность непрерывно

и равномерно, так то амплитуда колебания, идущего от малого участка поверхности Σ, пропорциональна площади ΔΣ этого участка (рис. ). Во-вторых, поверхность Σ, как и всякая светящаяся поверхность, излучает в разных направлениях неодинаково: чем больше угол α между направлением излучения и нормалью к элементу ΔΣ, тем меньше амплитуда колебания, посылаемого в этом направлении. В-третьих, поскольку амплитуда сферической волны убывает обратно пропорционально расстоянию r от источника, то колебания, приходящие в точку наблюдения от более удаленных участков поверхности Σ, будут иметь меньшую амплитуду.
Используя принцип Гюйгенса-Френеля для объяснения дифракционной картины, необходимо учитывать ряд обстоятельств. Во-первых, следует считать, что вторичные источники

Слайд 18Две соседние зоны Френеля действуют как источники, колеблющиеся в противофазе,

т.е вторичные волны, распространяющиеся из соседних зон в точке наблюдения

будут гасить друг друга . Чтобы найти освещенность в точке наблюдения P нужно просуммировать напряженности электрических полей от всех вторичных источников, приходящих в данную точку. Результат сложения волн зависит от амплитуды и разности фаз. Так как разность фаз между соседними зонами равна , то можно перейти к суммированию амплитуд.

Метод зон Френеля





Две соседние зоны Френеля действуют как источники, колеблющиеся в противофазе, т.е вторичные волны, распространяющиеся из соседних зон

Слайд 23Радиус -ой зоны определяется выражением

Площадь m-зоны-

не

зависит от номера зоны.







Радиус -ой зоны определяется выражением   Площадь m-зоны-

Слайд 24Отверстие радиусом
отрывает для точки число зон Френеля, равное




Тогда, при нечетных m,


а при четных m








Отверстие радиусом отрывает для точки число зон Френеля, равное  Тогда, при нечетных m, а при четных

Слайд 25Так как в приведенных формулах выражения в скобках приблизительно равны

нулю, то при нечетных m
амплитуда результирующего колебания равна

в то

время как для четных она близка к нулю
Так как в приведенных формулах выражения в скобках приблизительно равны нулю, то при нечетных m амплитуда результирующего

Слайд 273. Если интенсивность излучения, исходящего из двух соседних зон одинакова,

то при сложении будет наблюдаться не просто минимум освещённости, но

полная темнота.

Этого можно добиться, если число точечных источников в каждой зоне одинаково. А для этого необходимо, чтобы площади зон были равны.

Участки волнового фронта одинаковой площади, из которых в точку наблюдения волны будут приходить с разностью хода в λ/2 называются зонами Френеля.

Таким образом, если в открытом участке волнового фронта укладывается чётное число зон Френеля, то две каждые соседние зоны при сложении давать минимум освещённости и в результате в точке наблюдения мы увидим тёмное пятно (полосу).

Напротив, если в открытом участке волнового фронта укладывается нечётное число зон Френеля, в точке наблюдения мы увидим светлое пятно (полосу) (Одна из зон не имеет «соседней» дающей разность хода с ней в λ/2 .)

1. Разделим волновой фронт в отверстии на такие участки (или зоны), из которых в точку наблюдения волны будут приходить с разностью хода в λ/2.

2. Тогда волны, приходящие из соседних зон в точку наблюдения с разностью хода в λ/2 будут при сложении давать минимум освещённости.


3. Если интенсивность излучения, исходящего из двух соседних зон одинакова, то при сложении будет наблюдаться не просто

Слайд 28Метод зон Френеля
Для применения метода зон Френеля

необходимо сделать следующее:
1. Построить чертёж, отражающий ход

лучей от источника к точке наблюдения.

2. Разделить волновой фронт на зоны Френеля. При этом следует помнить, что площади зон Френеля должны быть равны.

3. Определить число зон Френеля, помещающееся в открытой части волнового фронта, на основании чего сделать выводы об освещённости точки наблюдения.

4. Разбиение волнового фронта на зоны Френеля определяется положением точки наблюдения, поэтому при переходе к другой точке наблюдения следует повторить всю процедуру сначала.

Метод зон Френеля   Для применения метода зон Френеля необходимо сделать следующее:   1. Построить

Слайд 29Дифракция света на диске и круглом отверстии

Дифракция света на диске и круглом отверстии

Слайд 30Дифракция на краю полуплоскости

Дифракция на краю полуплоскости

Слайд 31Зоны Шустера

Зоны Шустера

Слайд 32Спираль Корню

Спираль Корню

Слайд 33Спираль Корню

Спираль Корню

Слайд 35Дифракция Фраунгофера. Метод векторных диаграмм

Дифракция Фраунгофера.  Метод векторных диаграмм

Слайд 36Приближения Френеля, Фраунгофера и геометрическая оптика
В зависимости от расстояний от

источника излучения и плоскости наблюдения до отверстия, длины волны излучения

и размера отверстия можно выделить три характерные области дифракции: геометрооптическую, дифракции Френеля и дифракции Фраунгофера.

Приближения Френеля, Фраунгофера и геометрическая оптикаВ зависимости от расстояний от источника излучения и плоскости наблюдения до отверстия,

Слайд 37Различные случаи дифракции отличаются количеством открытых зон Френеля.
Количественным критерием

служит параметр p . Он равен отношению радиуса первой зоны

Френеля к радиусу отверстия R. Если отверстие имеет щелевидную или квадратную форму, то полагают, что равен половине размера щели или стороны квадрата.
Область приближения геометрической оптики соответствует значению .Открыто много зон Френеля.
Область дифракции Френеля - .Открыты одна или несколько зон Френеля.
Область дифракции Фраунгофера - . Открыта часть зоны Френеля.
Отметим, что нет резких границ между различными областями дифракции. Они постепенно переходят друг в друга.




Различные случаи дифракции отличаются количеством открытых зон Френеля. Количественным критерием служит параметр p . Он равен отношению

Слайд 38Дифракция Фраунгофера на щели
Каждая точка отверстия является

источником вторичных волн волн. Рассмотрим участок длиной dx, расположенный внутри

отверстия на расстоянии x от края.

Волны, излучённые с отрезка dx распространяются по всем направлениям (-π/2 < φ < π/2).

Рассмотрим волны, распространяющиеся вдоль прямой, образующей угол φ с перпендикуляром к преграде.

Волны, излучённые с отрезка dx, запаздывают по фазе на

- волновое число (модуль волнового вектора).

Дифракция Фраунгофера на щели   Каждая точка отверстия является источником вторичных волн волн. Рассмотрим участок длиной

Слайд 39Дифракция Фраунгофера на щели
Точная теория (Углубленный уровень)
Запишем

уравнение волны, испущенной с участка dx в рассматриваемом направлении.
Пусть Е0

– амплитуда волны, испущенной из всего отверстия в рассматриваемом направле-нии, тогда амплитуда волны, испущенной с участка dx равна

Уравнение волны, испущенной с участка dx в рассматриваемом направлении:

Дифракция Фраунгофера на щелиТочная теория (Углубленный уровень)   Запишем уравнение волны, испущенной с участка dx в

Слайд 40Для волны, испущенной из всего отверстия в рассматри-ваемом направлении.
Точная теория

Для волны, испущенной из всего отверстия в рассматри-ваемом направлении.Точная теория

Слайд 41Преобразуем полученное выражение к симметричной форме.
где
Точная теория

Преобразуем полученное выражение к симметричной форме.гдеТочная теория

Слайд 42где
Итак,
Уравнение волны, испущенной из всей щели в рассматриваемом направлении:
Точная теория

гдеИтак,Уравнение волны, испущенной из всей щели в рассматриваемом направлении:Точная теория

Слайд 43Интенсивность излучения, испущенного из всей щели в рассматриваемом направлении определяется

квадратом амплитуды
где
Точная теория

Интенсивность излучения, испущенного из всей щели в рассматриваемом направлении определяется квадратом амплитудыгдеТочная теория

Слайд 44Исследуем полученную функцию. При u → 0
Это максимальное значение этой

функции. При возрастании модуля u функция будет убывать. Это убывание

не будет монотонным вследствие осцилляций числителя.

Теперь можно определить, при каких значениях угла дифракции наблюдаются максимумы и минимумы интенсивности излучения.

Точная теория

Исследуем полученную функцию. При u → 0Это максимальное значение этой функции. При возрастании модуля u функция будет

Слайд 45Функция
имеет локальные минимумы при условии

Точная теория

Функцияимеет локальные минимумы при условииТочная теория

Слайд 46Метод векторных диаграмм для вывода дифракции Фраунгофера на щели (Базовый

уровень)

Метод векторных диаграмм для вывода дифракции Фраунгофера на щели (Базовый уровень)

Слайд 47Дифракция Фраунгофера на щели

,

При малых углах, когда
,


Дифракция Фраунгофера на щели, При малых углах, когда ,

Слайд 48Дифракция Фраунгофера на одной щели при изменении её ширины. Ширина

дифракционного максимума на экране увеличивается обратно пропорционально ширине щели. Можно

наблюдать также два боковых максимума.
Дифракция Фраунгофера на одной щели при изменении её ширины. Ширина дифракционного максимума на экране увеличивается обратно пропорционально

Слайд 49Анимация показывает эксперимент с дифракцией Фраунгофера на двух щелях, когда

ширина каждой щели меняется, а расстояние между щелями остается постоянным.

В результате период интерференционных полос на экране остаётся неизменным, но меняется общее наблюдаемое число полос. Чем уже щели, тем шире интерференционная картина, тем меньше её яркость.
Анимация показывает эксперимент с дифракцией Фраунгофера на двух щелях, когда ширина каждой щели меняется, а расстояние между

Слайд 50Анимация показывает эксперимент с дифракцией Фраунгофера на двух щелях, когда

ширина щелей остается постоянной, а расстояние между щелями меняется. Мы

видим, что период интерференционных полос на экране изменяется обратно пропорционально расстоянию между щелями, а общая ширина дифракционной картины остаётся неизменной.
Анимация показывает эксперимент с дифракцией Фраунгофера на двух щелях, когда ширина щелей остается постоянной, а расстояние между

Слайд 51Дифракция Фраунгофера на периодической структуре (решётке)

Дифракция Фраунгофера  на периодической структуре (решётке)

Слайд 52Дифракция Фраунгофера на периодической структуре
Дифракционная решётка – совокупность большого числа

регулярно расположенных штрихов (канавок, щелей, выступов), нанесённых на плоскую или

сферическую поверхность.

Период дифракционной решётки – наименьшая часть решётки, перемещая которую, можно воспроизвести всю решётку.

Для плоской одномерной дифракционной решётки длина периода равна

где b – ширина отверстия, а – ширина штриха (непрозрачной части).

Период дифракционной решётки связан с числом нанесённых на неё штрихов соотношением

где N – число штрихов на единицу длины.

Дифракция Фраунгофера на периодической структуреДифракционная решётка – совокупность большого числа регулярно расположенных штрихов (канавок, щелей, выступов), нанесённых

Слайд 53АМПЛИТУДНЫЕ ДИФРАКЦИОННЫЕ РЕШЕТКИ
Наиболее яркие дифракционные максимумы соответствуют низшим порядкам. Это

позволяет наблюдать дифракционную картину даже от источника белого цвета. В

центре расположена белая (ахроматическая) полоса, поскольку положение нулевого максимума для всех волн одинаковое.
АМПЛИТУДНЫЕ ДИФРАКЦИОННЫЕ РЕШЕТКИНаиболее яркие дифракционные максимумы соответствуют низшим порядкам. Это позволяет наблюдать дифракционную картину даже от источника

Слайд 54Дифракция Фраунгофера на периодической структуре
На дифракционную решётку

падает плоская волна (волновой фронт – плоскость). Известна длина волны

λ, размер отверстия b, период решётки d, расстояние до экрана L. Требуется определить, как распределена интенсивность излучения по направлениям (на экране).
Дифракция Фраунгофера на периодической структуре   На дифракционную решётку падает плоская волна (волновой фронт – плоскость).

Слайд 55


Дифракция Фраунгофера на периодической структуре
Чтобы решить поставленную задачу, нам необходимо

просуммировать вклады в интенсивность результирующей волны от всех точечных источников,

расположенных во всех щелях дифракционной решётки. Всю процедуру вывода формулы можно разделит на четыре этапа.

1. Записать уравнение волны, излучаемой одним точечным источником.

2. Записать уравнение волны, излучаемой всеми точечными источниками одной щели.

3. Записать уравнение волны, излучаемой всеми щелями дифракционной решётки.


4. Записать и исследовать выражение для суммарной интенсивности излучения по заданному направлению

Дифракция Фраунгофера на периодической структуреЧтобы решить поставленную задачу, нам необходимо просуммировать вклады в интенсивность результирующей волны от

Слайд 56Дифракция Фраунгофера на периодической структуре
Результирующая интенсивность является произведением двух функций:


где
На следующем рисунке этот факт проиллюстрирован для соотношения между шириной

щели и периодом дифракционной решётки
Дифракция Фраунгофера на периодической структуреРезультирующая интенсивность является произведением двух функций: гдеНа следующем рисунке этот факт проиллюстрирован для

Слайд 57Дифракция Фраунгофера на периодической структуре
где
Распределение интенсивности излучения

Дифракция Фраунгофера на периодической структурегдеРаспределение интенсивности излучения

Слайд 59Векторная диаграмма при дифракции на решетке
http://www.physics.ru/courses/op25part2/design/index.htm

Векторная диаграмма при дифракции на решеткеhttp://www.physics.ru/courses/op25part2/design/index.htm

Слайд 62Если рассмотреть наклонное падение волны на дифракционную решетку, то разность

хода между крайними точками равна


отсюда условие минимумов



Если рассмотреть наклонное падение волны на дифракционную решетку, то разность хода между крайними точками равна отсюда условие

Слайд 63Дифракция Фраунгофера на периодической структуре
Краткие выводы.
1. Распределение интенсивности излучения при

дифракции монохроматической волны на периодической структуре можно представить, как результат

двух процессов: 1) дифракции волны на отверстии, 2) интерференции пучков, исходящих из всех отверстий.

2. Положение главных дифракционных максимумов определяется интерференцией пучков, исходящих из разных отверстий решётки. Условие наблюдения главных максимумов


3. Интенсивность главных максимумов определяется как процессом дифракции на отдельном отверстии, так и процессом интерференции волн, исходящих из всех отверстий.

Дифракция Фраунгофера на периодической структуреКраткие выводы.1. Распределение интенсивности излучения при дифракции монохроматической волны на периодической структуре можно

Слайд 64Дифракционная решетка как спектральный прибор
Положение узких главных максимумов зависит

от длины волны .Это позволяет использовать решетку в качестве спектрального

прибора. Решетка способна разлагать свет в спектр. Для этого могут быть использованы дифракционные максимумы различных порядков (кроме m=0). Практически, однако, используются главные максимумы, расположенные в пределах основного лепестка диаграммы излучения одиночной щели, имеющего полуширину . Отсюда можно получить оценку:


Угловая дисперсия
Угловой дисперсией спектральных приборов называется величина

В случае решетки, угловая дисперсия равна
Приближенное выражение справедливо в случае малых дифракционных углов






Дифракционная решетка как спектральный прибор 	Положение узких главных максимумов зависит от длины волны .Это позволяет использовать решетку

Слайд 65Разрешающая способность
Разрешающей способностью спектрального прибора принято называть отношение

,

где

– минимальный интервал между двумя близкими спектральными линиями, при котором они могут быть разрешены, то есть, отделены одна от другой.
В качестве критерия разрешения используется обычно критерий разрешения Рэлея. Спектральные линии с близкими значениями и считаются разрешенными, если главный максимум дифракционной картины для одной спектральной линии совпадает по своему положению с первым дифракционным минимумом для другой спектральной линии.






Разрешающая способностьРазрешающей способностью спектрального прибора принято называть отношение         ,

Слайд 67Примеры решения задач. (Дифракция Фраунгофера)

Примеры решения задач. (Дифракция Фраунгофера)

Слайд 681. На щель шириной b = 20 мкм падает нормально

параллельный пучок монохроматического света (λ = 500 нм). Найти ширину

изображения А щели на экране, удаленном от щели на расстояние L = 1 м.

Ответ: А= 5см.

Шириной изображения будем считать расстояние между первыми дифракционными минимумами, расположенными по обе стороны от главного максимума освещенности.

Дано:
λ = 500 нм
L = 1 м
b = 20 мкм

A - ?

Решение

Положение дифракционных минимумов на экране определяется формулой

(м).

1. На щель шириной b = 20 мкм падает нормально параллельный пучок монохроматического света (λ = 500

Слайд 692. На щель шириной b = 6λ падает нормально параллельный

пучок монохроматического света с длиной волны λ. Под каким углом

α будет наблюдаться третий дифракционный минимум интенсивности света?

Ответ: α = 30°.

Дано:
b = 6λ

α - ?

Решение

Положение дифракционных минимумов на экране определяется формулой

2. На щель шириной b = 6λ падает нормально параллельный пучок монохроматического света с длиной волны λ.

Слайд 703. На дифракционную решетку нормально падает пучок света. Натриевая линия

(λ1 = 589 нм) дает в спектре первого порядка угол

дифракции φ1 = 17°8'. Некоторая линия дает в спектре второго порядка угол дифракции φ2 = 24°12'. Найти длину волны этой линии и число штрихов на единицу длины решетки.

Дано:
λ1 = 589 нм
φ1 = 17°8'
φ2 = 24°12'

λ2 - ?
N - ?

Решение

Положение дифракционных максимумов на экране определяется формулой

Запишем условие максимума для обеих линий:


Разделив второе уравнение на первое, получим:

Отсюда:

(нм).

3. На дифракционную решетку нормально падает пучок света. Натриевая линия (λ1 = 589 нм) дает в спектре

Слайд 71Ответ: λ2 = 409,9 нм; N = 500 мм-1.
3.На

дифракционную решетку нормально падает пучок света. Натриевая линия (λ1 =

589 нм) дает в спектре первого порядка угол дифракции φ1 = 17°8'. Некоторая линия дает в спектре второго порядка угол дифракции φ2 = 24°12'. Найти длину волны этой линии и число штрихов на единицу длины решетки.

Решение (продолжение)

Число штрихов на единицу длины решётки

(м).

Ответ:  λ2 = 409,9 нм; N = 500 мм-1.3.На дифракционную решетку нормально падает пучок света. Натриевая

Слайд 72Ответ: λ = 447 нм
4. На дифракционную решетку

нормально падает пучок света от разрядной трубки, наполненной гелием. На

какую линию в спектре третьего порядка накладывается красная линия гелия (λ1 = 670 нм) спектра второго порядка?

Дано:
λ1 = 670 нм
m1 = 3
m2 = 2

λ2 - ?

Решение

Дифракционные максимумы на экране накладываются друг на друга, если для них равны углы дифракции.

Величины углов дифракции определяется формулой

Следовательно,

(нм).

Ответ:  λ = 447 нм 4. На дифракционную решетку нормально падает пучок света от разрядной трубки,

Слайд 73Ответ: k = 3.
5. Найти наибольший порядок спектра k для

желтой линии натрия (λ = 589 нм), если период дифракционной

решетки d = 2 мкм.

Дано:
λ = 589 нм
d = 2 мкм

mmax - ?

Решение

Величины углов дифракции определяется формулой

Следовательно,

Допустимы такие m, когда

Ответ: k = 3.5. Найти наибольший порядок спектра k для желтой линии натрия (λ = 589 нм),

Слайд 74Лекция окончена

Лекция окончена

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика