Разделы презентаций


ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ

Содержание

Тема 2. ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИПлан лекции2.1. Первый закон Ньютона.2.2. Второй закон Ньютона. 2.3. Третий закон Ньютона.2.4. Виды сил природы.

Слайды и текст этой презентации

Слайд 1Мультимедийные лекции по физике
Классическая и релятивистская механика

Мультимедийные лекции по физикеКлассическая и релятивистская механика

Слайд 2Тема 2. ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ
План лекции

2.1. Первый закон Ньютона.

2.2.

Второй закон Ньютона.

2.3. Третий закон Ньютона.

2.4. Виды сил

природы.
Тема 2.  ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИПлан лекции2.1. Первый закон Ньютона.2.2. Второй закон Ньютона.  2.3. Третий закон

Слайд 3Динамика как наука
Динамика изучает движение тел в связи с теми

причинами, которые обусловливают тот или иной характер движения.

Этими причинами

являются взаимодействия между телами.

В основе классической динамики лежат три закона, сформулированные Ньютоном в 1687 г.

Законы Ньютона возникли в результате обобщения большого количества опытных фактов.

Динамика как наукаДинамика изучает движение тел в связи с теми причинами, которые обусловливают тот или иной характер

Слайд 42.1. Первый закон Ньютона
Формулировка закона:
Любое свободное тело сохраняет состояние покоя

или равномерного прямолинейного движения, пока воздействие со стороны других тел

не заставит его изменить это состояние.

Тел, не подвергающихся в той или иной степени воздействию со стороны других тел, не существует.

В наблюдаемых случаях имеют дело с телами, воздействие на которые уравновешивают друг друга.
2.1. Первый закон НьютонаФормулировка закона:Любое свободное тело сохраняет состояние покоя или равномерного прямолинейного движения, пока воздействие со

Слайд 5
Точка С находится в покое, пока действие сил упругости в

нитях уравновешивается силой тяжести тела.

Точка С находится в покое, пока действие сил упругости в нитях уравновешивается силой тяжести тела.

Слайд 6
Первый закон Ньютона выполняется не во всякой системе отсчета.


Первый закон

Ньютона не выполняется в системах отсчёта, движущихся с ускорением.



Первый закон

Ньютона иногда называют законом инерции.
Первый закон Ньютона выполняется не во всякой системе отсчета.Первый закон Ньютона не выполняется в системах отсчёта, движущихся

Слайд 7Инерциальные системы отсчёта
Инерциальной называется система отсчёта, в которой любое тело

будет находиться в состоянии покоя или равномерного прямолинейного движения до

тех пор, пока воздействие на него других тел скомпенсировано.

Инерциальной называется система отсчета, относительно которой выполняется первый закон Ньютона.

Инерциальными будут являться все системы отсчёта, движущиеся относительно инерциальной (покоящейся) прямолинейно и равномерно с постоянной скоростью.

Инерциальные системы отсчётаИнерциальной называется система отсчёта, в которой любое тело будет находиться в состоянии покоя или равномерного

Слайд 8Принцип относительности Галилея

Инерциальными будут являться системы отсчёта, связанные с удалёнными

телами (звёздами, Солнцем).


Механический принцип относительности Галилея формулируется: находясь внутри инерциальной

системы отсчёта никакими механическими опытами нельзя определить находится ли эта система отсчёта в покое или движется равномерно и прямолинейно.
Принцип относительности ГалилеяИнерциальными будут являться системы отсчёта, связанные с удалёнными телами (звёздами, Солнцем).Механический принцип относительности Галилея формулируется:

Слайд 9Закон инерции
Первый закон Ньютона называют законом инерции.

Закон инерции:
- один

из самых фундаментальных законов природы.

- справедлив для всех физических объектов:

и для микрочастиц и для тел космического масштаба.

не поколебала ни одна из революций естествознания ХХ века – ни теория относительности, ни квантовая механика.

- связан со свойствами пространства –
однородностью и изотропностью.
Закон инерцииПервый закон Ньютона называют законом инерции.Закон инерции: - один из самых фундаментальных законов природы.- справедлив для

Слайд 10Инерция
Инерция:

- свойство тел сохранять своё прежнее механическое состояние (или

состояние покоя или состояние равномерного прямолинейного движения).



- свойство материальных

точек изменять под действием сил модуль и направление скорости движения постепенно.
ИнерцияИнерция: - свойство тел сохранять своё прежнее механическое состояние (или состояние покоя или состояние равномерного прямолинейного движения).

Слайд 11Классические свойства пространства и времени
Пространство однородно и изотропно.

Если бы свободная

материальная точка, движущаяся по инерции, в какой-то точке пространства изменила

величину своей скорости, то это означало бы, что данная точка пространства чем-то отличается от других, т.е. пространство неоднородно.


Если бы свободная материальная точка, движущаяся по инерции изменила бы направление своего движения, то это означало бы, что данное направление чем-то отличается от других, т. е. пространство анизотропно.
Классические свойства пространства и времениПространство однородно и изотропно.Если бы свободная материальная точка, движущаяся по инерции, в какой-то

Слайд 12
Однородность пространства означает, что результат опыта не зависит от места

его проведения.



Изотропность пространства означает, что результат опыта не зависит от

направления осей координат.



Однородность времени означает, что результат опыта не зависит от времени его проведения.
Однородность пространства означает, что результат опыта не зависит от места его проведения.Изотропность пространства означает, что результат опыта

Слайд 132.2. Второй закон Ньютона
Динамика как наука рассматривает новые физические

величины: сила и импульс силы, масса и импульс тела.

Сила

- мера механического воздействия одного тела на другое.

- величина векторная: имеет точку приложения, направление действия и величину.

- измеряется в Н (ньютонах).


2.2.  Второй закон НьютонаДинамика как наука рассматривает новые физические величины: сила и импульс силы, масса и

Слайд 14
Действие силы может быть статическим и динамическим.


Статическое действие проявляется

в создании деформаций.


Динамическое действие проявляется в создании ускорений.

Действие силы может быть статическим и динамическим. Статическое действие проявляется в создании деформаций.Динамическое действие проявляется в создании

Слайд 15Сила
Механическое действие (сила) возникает
при непосредственном контакте взаимодействующих тел (трение,

реакция опоры, вес и т.д.);
посредством силового поля, существующего в пространстве

(сила тяжести, кулоновские силы и т.д.).

Величина силы зависит от расстояния между телами, относительной скорости движения тел и времени взаимодействия тел.


СилаМеханическое действие (сила) возникает при непосредственном контакте взаимодействующих тел (трение, реакция опоры, вес и т.д.);посредством силового поля,

Слайд 16Силы
Внутренними называются силы, с которыми тела взаимодействуют между собой.
Внешними называются

силы, действующие на тела со стороны других тел, не входящих

в систему.

Силы

Внутренние

Внешние

Консервативные

Неконсервативные

СилыВнутренними называются силы, с которыми тела взаимодействуют между собой.Внешними называются силы, действующие на тела со стороны других

Слайд 17Равнодействующая сила
Принцип независимости действия сил: если на тело одновременно действует

несколько сил, то действие каждой силы происходит независимо от других.

Равнодействующей

(результирующей) называется сила, которая заменяет суммарное действие нескольких сил.

Равнодействующая сила равна векторной сумме отдельных сил.


Равнодействующая силаПринцип независимости действия сил: если на тело одновременно действует несколько сил, то действие каждой силы происходит

Слайд 18Импульс силы
Импульс силы:
- величина, равная произведению силы на время её

действия;



- измеряется в ньютонах в секунду (Н с);

- Величина векторная,

совпадающая по направлению действия силы.
Импульс силыИмпульс силы:- величина, равная произведению силы на время её действия;- измеряется в ньютонах в секунду (Н

Слайд 19Масса тела
Масса тела:

- мера инертности тела при поступательном движении;

-

в классической механике не зависит от скорости;

величина скалярная;

- измеряется в

кг.


Масса телаМасса тела: - мера инертности тела при поступательном движении;- в классической механике не зависит от скорости;величина

Слайд 20Импульс тела
Импульс тела (материальной точки):
величина, равная произведению массы точки

(тела) на скорость;


- измеряется в (кг м)/с.

- величина векторная, совпадающая

по направлению скорости.


V

p

Импульс телаИмпульс тела (материальной точки): величина, равная произведению массы точки (тела) на скорость;- измеряется в (кг м)/с.-

Слайд 21Формулировки второго закона Ньютона
Второй закон Ньютона устанавливает зависимость между величинами

динамики.


1. Скорость изменения импульса материальной точки в любой момент времени равна равнодействующей силе, действующей на точку (наиболее общая формулировка).


2. Изменение импульса материальной точки за время dt равно импульсу равнодействующей силы за этот же промежуток времени.


Формулировки второго закона НьютонаВторой закон Ньютона устанавливает зависимость между величинами динамики.

Слайд 22
Преобразуем формулу

к другому виду.




Так

как масса является величиной постоянной, то её можно вынести за знак производной.

Тогда второй закон Ньютона можно записать как:


Преобразуем формулу

Слайд 233. Ускорение, приобретаемое материальной точкой относительно инерциальной системы отсчета, прямо

пропорционально равнодействующей силе, обратно пропорционально массе точки и совпадает по

направлению с направлением равнодействующей силы.


3. Ускорение, приобретаемое материальной точкой относительно инерциальной системы отсчета, прямо пропорционально равнодействующей силе, обратно пропорционально массе точки и совпадает по направлению с направлением равнодействующей силы.

3. Ускорение, приобретаемое материальной точкой относительно инерциальной системы отсчета, прямо пропорционально равнодействующей силе, обратно пропорционально массе точки

Слайд 24Графическая интерпретация



а
F

a
m

a
Ускорение прямо
пропорционально силе
Ускорение обратно
пропорционально массе

Графическая интерпретация аFamaУскорение прямо пропорционально силеУскорение обратно пропорционально массе

Слайд 25Рисунки показывают, что под действием одинаковой силы тела разной массы

приобретают разные ускорения.

Рисунки показывают, что под действием одинаковой силы тела разной массы приобретают разные ускорения.

Слайд 262.3. Третий закон Ньютона
Опыт показывает, что механическое воздействие одного объекта

на другой не остается односторонним.


Третий закон Ньютона: силы, с которыми

взаимодействуют две материальные точки, равны по модулю, противоположны по направлению и направлены вдоль прямой, соединяющей эти точки.




F12

F21

1

2

2.3. Третий закон НьютонаОпыт показывает, что механическое воздействие одного объекта на другой не остается односторонним.Третий закон Ньютона:

Слайд 271
Силы действия и противодействия равны по величине, противоположны по направлению.

Они

не уравновешивают друг друга, так как приложены к разным телам.



1
2
F12
F21

1Силы действия и противодействия равны по величине, противоположны по направлению.Они не уравновешивают друг друга, так как приложены

Слайд 28

Третий закон Ньютона:

справедлив для любых материальных точек, как покоящихся,

так и движущихся;

выполняется только в рамках классической механики.



Для

тел, движущихся друг относительно друга со скоростями, соизмеримыми со скоростью света, он не выполняется.
Третий закон Ньютона: справедлив для любых материальных точек, как покоящихся, так и движущихся; выполняется только в рамках

Слайд 292.4. Виды сил
В механике принято рассматривать следующие виды сил:

1. Гравитационная

сила
2. Сила тяжести
3. Вес тела
4. Сила реакции опоры
5. Сила трения
6.

Упругая сила
7. Сила тяги мотора
8. Выталкивающая сила (сила Архимеда)

2.4. Виды силВ механике принято рассматривать следующие виды сил:1. Гравитационная сила2. Сила тяжести3. Вес тела4. Сила реакции

Слайд 30Закон всемирного тяготения
Гравитационная сила

В природе существует 4 типа взаимодействий:
-

гравитационное;
- электромагнитное;
- сильное;
- слабое.
Гравитационные силы действуют между двумя

массами и являются силами притяжения.



m1

m2

r

F

F

Закон всемирного тяготенияГравитационная силаВ природе существует 4 типа взаимодействий: - гравитационное; - электромагнитное; - сильное;- слабое.Гравитационные силы

Слайд 31Гравитационное взаимодействие сильно проявляется только с телами очень большой массы

(в космосе).

Гравитационное взаимодействие сильно проявляется только с телами очень большой массы (в космосе).

Слайд 32F
Закон всемирного тяготения: сила взаимодействия двух тел прямо пропорциональна произведению

масс этих тел и обратно пропорциональна квадрату расстояния между ними.


Гравитационная

сила направлена по линии, соединяющей центры тяжести тел.





F

F

m1

m2

r

FЗакон всемирного тяготения: сила взаимодействия двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату

Слайд 331кг
G – гравитационная постоянная.
Она численно равна силе взаимодействия двух

масс по 1 кг, расположенных в вакууме на расстоянии 1

м.
G = 6,67 10 -11 (Н м2/ кг2)

Закон всемирного тяготения справедлив как в макромире, так и в микромире.




1кг

1 кг

r = 1 м

F = G

1кгG – гравитационная постоянная. Она численно равна силе взаимодействия двух масс по 1 кг, расположенных в вакууме

Слайд 34Сила тяжести
Сила тяжести:
- сила, с которой тело притягивается Землёй (планетой).
-

равна произведению массы тела на ускорение свободного падения;
- не может

быть равна нулю;
- направлена вертикально вниз по отношению к линии горизонта;
- проявление гравитационной силы, которая направлена к центру земли.

F= mg



mg

Сила тяжестиСила тяжести:- сила, с которой тело притягивается Землёй (планетой).- равна произведению массы тела на ускорение свободного

Слайд 35Ускорение свободного падения
Ускорение свободного падения определяется по формуле




R - радиус планеты,
h - высота тела над поверхностью планеты,
М - масса планеты.
На Земле (Мз = 5,976⋅1024 кг, Rз = 6378 км, h = 0)
g = 9,81 м/с2.

Ускорение свободного падения зависит:
от высоты над Землей;
широты местности (из-за вращения Земли вокруг собственной оси).


Ускорение свободного падения Ускорение свободного падения определяется по формуле

Слайд 36Сила реакции опоры и вес тела
Сила тяжести деформирует опору, и

в ней возникает сила упругости, которая называется силой реакции опоры

N.
Сила реакции опоры деформирует опору, вследствие чего в опоре возникает новая сила – вес тела Р.







а = 0

а

а

mg

P

N

N

mg

P

N

mg

P

Сила реакции опоры и вес телаСила тяжести деформирует опору, и в ней возникает сила упругости, которая называется

Слайд 37Сила реакции опоры всегда направлена перпендикулярно опоре.

Сила реакции опоры всегда направлена перпендикулярно опоре.

Слайд 38Сила тяжести приложена к телу, сила реакции опоры – к

опоре, вес тела приложен к телу.

Сила тяжести приложена к телу, сила реакции опоры – к опоре, вес тела приложен к телу.

Слайд 39Величина веса тела зависит от механического состояния опоры: движется ли

она с ускорением или находится в покое.



1. Если ускорение опоры

равно нулю, то вес тела равен силе тяжести:
Р = mg

Вес тела – сила, с которой тело действует на опору или натягивает отвес.

Величина веса тела зависит от механического состояния опоры: движется ли она с ускорением или находится в покое.



1. Если ускорение опоры равно нулю, то вес тела равен силе тяжести:
Р = mg

Величина веса тела зависит от механического состояния опоры: движется ли она с ускорением или находится в покое.1.

Слайд 40
2. Если опора движется вверх с ускорением, то вес тела

больше силы тяжести (перегрузки):
Р = m(g + a)
В этом

случае вводится коэффициент перегрузки:
n = P/mg.

3. Если опора движется вниз с ускорением, то вес тела меньше силы тяжести:
P= m(g – a)

В этом случае при а = g наступает невесомость.
Невесомость – состояние тела, при котором вес тела равен нулю.
2. Если опора движется вверх с ускорением, то вес тела больше силы тяжести (перегрузки): Р = m(g

Слайд 41При движении опоры вверх с ускорением тело испытывает перегрузки.

При движении опоры вверх с ускорением тело испытывает перегрузки.

Слайд 42При движении опоры вниз с ускорением, большим ускорения свободного падения,

вес тела ме6няет своё направление а тело вновь испытывает перегрузки.

При движении опоры вниз с ускорением, большим ускорения свободного падения, вес тела ме6няет своё направление а тело

Слайд 43Сила трения
Сила трения бывает трёх видов: сила трения покоя, сила

трения скольжения и сила трения качения.

Сила трения покоя по модулю

равна той силе, которая выводит тело из состояния покоя: Fпокоя= - F0.
Сила трения скольжения равна произведению коэффициента трения скольжения k на силу, прижимающую тело к опоре (силу реакции опоры): Fтр= k N



F0

Fтр



V

Fтр

mg

N

Сила тренияСила трения бывает трёх видов: сила трения покоя, сила трения скольжения и сила трения качения.Сила трения

Слайд 44Сила трения скольжения всегда направлена против скорости движения тела и

возникает в обоих трущихся поверхностях.

Сила трения скольжения всегда направлена против скорости движения тела и возникает в обоих трущихся поверхностях.

Слайд 45Сила упругости
Сила упругости возникает при деформации тел.
Деформация – изменение линейных

размеров тел.
Деформации бывают упругими и пластическими.
Упругой называется деформация, при которой

тело восстанавливает свои первоначальные размеры.
В области упругой деформации справедлив закон Гука: сила упругости прямо пропорциональна абсолютному удлинению.

Fупр.= kx

Сила упругостиСила упругости возникает при деформации тел.Деформация – изменение линейных размеров тел.Деформации бывают упругими и пластическими.Упругой называется

Слайд 46Силу упругости легко наблюдать в пружинах, поскольку абсолютное удлинение заметно

визуально.

Силу упругости легко наблюдать в пружинах, поскольку абсолютное удлинение заметно визуально.

Слайд 47На рисунках показано направление упругой силы.

На рисунках показано направление упругой силы.

Слайд 48k= Fупр/х
Коэффициент жёсткости пружины k:
- равен упругой силе, возникающей

при единичном удлинении.
- измеряется в Н/м.


Пластической называется деформация, при

которой первоначальные размеры тела не восстанавливаются.


Сила упругости, вес тела, сила реакции опоры – проявление электромагнитного взаимодействия.

k= Fупр/х

k= Fупр/хКоэффициент жёсткости пружины k: - равен упругой силе, возникающей при единичном удлинении. - измеряется в Н/м.Пластической

Слайд 49Сила Архимеда
На тело, погружённое в жидкость (или газ), действует выталкивающая

сила, направленная вертикально вверх.
Закон Архимеда: выталкивающая сила равна весу вытесненной

жидкости в объёме погружённой части тела.



Условие плавания тел:
mg = FA

FA = g V





mg

FA


Сила АрхимедаНа тело, погружённое в жидкость (или газ), действует выталкивающая сила, направленная вертикально вверх.Закон Архимеда: выталкивающая сила

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика