Разделы презентаций


Лекция 1 Основные законы химии

Содержание

Основная литература:1. Угай Я.А. Общая и неорганическая химия. [Текст] / Я.А. Угай. - М.: Высш. шк., 2002.- 528 с.2. Ахметов Н.С. Общая и неорганическая химия. [Текст] / Н.С. Ахметов.- М.: Высшая

Слайды и текст этой презентации

Слайд 1Лекция 1 Основные законы химии

Лекция 1 Основные законы химии

Слайд 2
Основная литература:
1. Угай Я.А. Общая и неорганическая химия. [Текст] /

Я.А. Угай. - М.: Высш. шк., 2002.- 528 с.
2. Ахметов

Н.С. Общая и неорганическая химия. [Текст] / Н.С. Ахметов.- М.: Высшая шк., 2003.- 743 с.
3. Глинка Н.Л. Задачи и упражнения по общей химии. [Текст] / Н.Л. Глинка.- М.: Интеграл-пресс, 2005.- 240с.


Основная литература:1. Угай Я.А. Общая и неорганическая химия. [Текст] / Я.А. Угай. - М.: Высш. шк., 2002.-

Слайд 3Учебно-методические комплексы по дисциплинам

Учебно-методические комплексы по дисциплинам

Слайд 4Выбрать факультет
Кафедру
Дисциплину
Рабочую программу
Конспект лекций
Лабораторный практикум

Выбрать факультетКафедруДисциплинуРабочую программуКонспект лекций Лабораторный практикум

Слайд 5а.е.м. = 1,667•10 -24 г
Относительной атомной массой Аr химического элемента

называется величина, равная отношению средней массы атома естественного изотопического состава

элемента к 1/12 массы изотопа углерода-12. Относительной молекулярной массой Мr химического вещества называется величина, равная отношению средней массы молекулы естественного изотопического состава вещества к 1/12 массы изотопа углерода-12.
а.е.м. = 1,667•10 -24 гОтносительной атомной массой Аr химического элемента называется величина, равная отношению средней массы атома

Слайд 6 Стехиометрические законы химии, их ограниченный характер и границы применимости
Закон

постоянства состава: химические соединения с молекулярной структурой имеют один и

тот же состав и свойства независимо от способа получения (Расчеты по химическим формулам, массовая доля элем., валентность, степень окисления, молекулы и структурные формулы)

Стехиометрические законы химии, их ограниченный характер и границы применимостиЗакон постоянства состава: химические соединения с молекулярной структурой

Слайд 7Закон кратных отношений
если два элемента образуют друг с другом несколько

соединений с молекулярной структурой, то массовые количества одного элемента, приходящиеся

на одно и тоже массовое количество другого относятся между собой как целые числа.
Этот закон подтверждает дискретность вещества, а также то, что все атомы одного химического элемента одинаковы и обладают строго определенной массой. Например, массовые соотношения С:О в оксидах СО2 и СО равны 12/32:12:16= 6/16:12/16= 1:2.
Закон кратных отношенийесли два элемента образуют друг с другом несколько соединений с молекулярной структурой, то массовые количества

Слайд 8Закон эквивалентов
Отношения масс молекулярных соединений, вступающих в химическую реакцию, равны

или кратны их эквивалентам, т.е., все вещества реагируют в эквивалентных

отношениях.
Эквивалентом называют условную или реальную единицу, способную присоединять, отдавать или замещать один протон в кислотно-основных реакциях или эквивалентную одному электрону в окислительно-восстановительной реакциях.
Закон эквивалентовОтношения масс молекулярных соединений, вступающих в химическую реакцию, равны или кратны их эквивалентам, т.е., все вещества

Слайд 10Фактор эквивалентности показывает, какая доля реальной частицы вещества эквивалентна одному

протону или электрону. Например:
fэкв(НСL) = 1/1; fэкв(Н2SO4) =

1/2; fэкв(Na2CO3) = 1/2;
fэкв(KMnO4) =1/5; fэкв(Fe2(SO4)3)=1/6.
Фактор эквивалентности показывает, какая доля реальной частицы вещества эквивалентна одному протону или электрону. Например: fэкв(НСL) = 1/1;

Слайд 11Число эквивалентности
Ζ –переменная величина, зависящая от состава вещества в

химической реакции.
Ζэлемента = с.о.
Ζкислоты = основности в реакции
Ζоснования = кислотности

в реакции
Ζсоли = с.о.МеХкол-во атомов Ме
Ζ(ОВР)= числу электронов
Число эквивалентности Ζ –переменная величина, зависящая от состава вещества в химической реакции.Ζэлемента = с.о.Ζкислоты = основности в

Слайд 12Молярная масса эквивалента – это масса одного моль – эквивалента

вещества, равная произведению фактора эквивалентности на молекулярную массу вещества. Например,

для карбоната натрия:
М(1/2Na2CO3) = fэквМ(Na2CO3) = 1/2М(Na2CO3) =
= 1/2 • (2 • 23 +12 + 3 • 16) = 53.
Молярная масса эквивалента – это масса одного моль – эквивалента вещества, равная произведению фактора эквивалентности на молекулярную

Слайд 13Аналитическое выражение закона:
С1V1 = С2V2,
где С1 и V1 – Молярная

концентрация эквивалента (эквивалентная концентрация, нормальность) и объем одного вещества, например

кислоты;
С2 и V2 – эквивалентная концентрация и объем другого вещества, например щелочи.
Аналитическое выражение закона: С1V1 = С2V2,где С1 и V1 – Молярная концентрация эквивалента (эквивалентная концентрация, нормальность) и

Слайд 14Агрегатное состояние вещества
Почти все известные вещества в зависимости от

условий находятся в газообразном, жидком, твердом или плазменном состоянии.
Это

и называется агрегатным состоянием вещества.
Агрегатное состояние не влияет на химические свойства и химическое строение вещества, а влияет на физическое состояние (плотность, вязкость, температуру и т.д.) и скорость химических процессов.
Агрегатное состояние вещества Почти все известные вещества в зависимости от условий находятся в газообразном, жидком, твердом или

Слайд 15Характеристика жидкого состояния вещества
Вблизи точки кипения они проявляют сходство

с газами: текучи, не имеют определенной формы, аморфны и изотропны,

то есть, однородны по своим свойствам в любом направлении.
С другой стороны жидкости, как и твердые тела, обладают объемной упругостью, они упруго противодействуют как всестороннему сжатию, так и всестороннему растяжению. Молекулы их стремятся к некоторому упорядоченному расположению в пространстве, то есть, жидкости имеют зачатки кристаллической структуры («ближний порядок»). Подобные свойства особенно проявляются вблизи температуры замерзания.
Характеристика жидкого состояния вещества Вблизи точки кипения они проявляют сходство с газами: текучи, не имеют определенной формы,

Слайд 16Жидкости не подчиняются законам идеальных газов, каждая жидкость характеризуется рядом

физических величин:
плотностью (, г/см3 – масса в единице объема);


температурой кипения (tкип, 0С);
температурой замерзания (tзам, 0С);
поверхностным натяжением (, Н/м – это работа необходимая для создания новой площади поверхности);
вязкостью (, Па • с – это сопротивление жидкости текучести, по особенностям вязкости жидкости делятся на ньютоновские и структурированные);
испарением (характеризует переход молекул жидкости в газообразное состояние, за счет более высокой кинетической энергии, и способностью преодолеть силы молекулярного взаимодействия: вандервальсовы и водородные); способностью образовать ассоциаты (димеры, тримеры), что приводит к повышению температуры кипения, коэффициента преломления, повышению теплоемкости, например у воды, жидкого аммиака, серной кислоты; существуют и другие свойства жидкостей, зависящие от их природы и природы растворенных в них веществ.
Жидкости не подчиняются законам идеальных газов, каждая жидкость характеризуется рядом физических величин: плотностью (, г/см3 – масса

Слайд 17Некоторые вещества в жидком состоянии обладают высокой степенью упорядоченности –

это кристаллические жидкости, или жидкие кристаллы, которые, как и кристаллические

вещества, обладают анизотропными свойствами, то есть, их свойства по различным направлениям различны. Такие системы занимают промежуточное положение между жидким и твердым состоянием. Они обладают текучестью, но имеют дальний порядок – упорядоченность расположения частиц по всему объему. Это связано со строением молекул: они сильно вытянуты, и подобранная форма сильно затрудняет вращение молекул в жидкости и способствует их более упорядоченому расположению:
Некоторые вещества в жидком состоянии обладают высокой степенью упорядоченности – это кристаллические жидкости, или жидкие кристаллы, которые,

Слайд 18Характеристика твёрдого состояния
Деформация – это способность твердого вещества восстанавливать

прежнюю форму после снятия действия сил, направленных на ее изменение.

По способности к деформации все тела разделяются на упругие, пластичные и хрупкие.
Твердые тела обычно делят на две группы: кристаллические вещества и аморфные.
Характеристика твёрдого состояния Деформация – это способность твердого вещества восстанавливать прежнюю форму после снятия действия сил, направленных

Слайд 19Кристаллические вещества имеют четкую внутреннюю структуру, что связано с правильным

расположением частиц в строго периодически повторяющемся порядке, а с этим

связаны следующие свойства:
а) для каждого твердого кристаллического тела есть строго постоянная температура плавления;
б) для монокристаллов (одиночные кристаллы) характерно явление анизотропии, то есть, свойства кристаллов в различных направлениях неодинаковы (тепло и электропроводность, механическая прочность, коэффициент теплового расширения, скорость растворения и т.д.). Для поликристаллов (реальных) это явление не проявляется;
в) кристаллы характеризуются энергией кристаллической решётки – той энергией, которая необходима для разрушения кристаллической структуры (кДж/моль).
Кристаллические вещества имеют четкую внутреннюю структуру, что связано с правильным расположением частиц в строго периодически повторяющемся порядке,

Слайд 20Характеристики некоторых веществ

Характеристики некоторых веществ

Слайд 21Аморфные вещества не имеют упорядоченной структуры. Такие вещества изотропны –

их свойства совершенно одинаковы по всем направлениям внутри тела. Эти

вещества не имеют постоянной температуры плавления. При нагревании они сначала размягчаются в определенном интервале температур, а затем постепенно переходят в жидкотекучее состояние. К аморфным веществам относят многие полимеры, смолы, простые вещества (Si, Se, Ag и др.), оксиды (SiO2, B2O3 и т.д.).
Аморфные вещества не имеют упорядоченной структуры. Такие вещества изотропны – их свойства совершенно одинаковы по всем направлениям

Слайд 22Резко противопоставлять аморфные тела кристаллическим не следует, так как многие

вещества можно получить как в аморфном, так и кристаллическом состоянии.

Например, SiO2 как горный хрусталь – это кристалл, а как опал – аморфное тело.
Аморфные тела могут переходить в кристаллическое состояние с течением времени. Это связано с тем, что с энергетической точки зрения аморфные вещества по сравнению с кристаллическими обладают большим запасом энергии, так как при кристаллизации твердого вещества происходит заметное выделение тепла, а при застывании расплавленного аморфного вещества никакого выделения тепла не наблюдается.
Резко противопоставлять аморфные тела кристаллическим не следует, так как многие вещества можно получить как в аморфном, так

Слайд 23Типы кристаллических решёток
По природе частиц в узлах кристаллической решетки

и химических связях между ними можно все кристаллы разделить на

молекулярные, атомно-ковалентные, ионные и металлические. Кроме того, существуют кристаллы со смешанными химическими связями.
Типы кристаллических решёток По природе частиц в узлах кристаллической решетки и химических связях между ними можно все

Слайд 24Интеркаляты
Вследствие большого расстояния между плоскостями и низкой энергии связи между

плоскостями графита могут внедряться атомы других элементов, например фтор или

щелочные металлы, ионы или молекулы, например СI, FеСI3. В результате получаются соединения графита, например С6Li, С8К, СFx, СxСly. Такие соединения называются интеркалятами или слоистыми соединениями. Процесс вхождения молекул, ионов или атомов в решетку называется интеркалированием:
C + xF = CFx
ИнтеркалятыВследствие большого расстояния между плоскостями и низкой энергии связи между плоскостями графита могут внедряться атомы других элементов,

Слайд 25Клатраты
Слоистые соединения являются разновидностью особого класса соединений, называемых клатратами или

соединениями включения, которые образованы включением молекул («гостей») в полости кристаллического

каркаса, состоящего из частиц другого вида («хозяев»), Кроме слоистых соединений (интеркалятов), к клатратам относятся газовые гидраты, клатраты мочевины и др.
КлатратыСлоистые соединения являются разновидностью особого класса соединений, называемых клатратами или соединениями включения, которые образованы включением молекул («гостей»)

Слайд 26В газовых гидратах в полостях кристаллов льда могут находиться молекулы,

размеры которых лежат в пределах 0,38 ÷ 0,92 нм (N2,

О2, СН4, СО2, Сl2, Аг, Хе, Н2S, СH4, Вг2 иди др.). Например, известны клатраты примерного состава СН4.6Н2О, в которых на 46 молекул воды имеется 8 полостей, занятых молекулами метана.
В газовых гидратах в полостях кристаллов льда могут находиться молекулы, размеры которых лежат в пределах 0,38 ÷

Слайд 27Плазма – это любой объект, в котором хаотически движутся электрически

заряженные частицы (электроны, ядра или ионы).
Плазменное состояние в природе

является господствующим и возникает под действием ионизирующих факторов: высокой температуры, электрического разряда, электромагнитных излучений высоких энергий и т.д.
Плазма – это любой объект, в котором хаотически движутся электрически заряженные частицы (электроны, ядра или ионы). Плазменное

Слайд 28Различают два основных вида плазмы: изотермическую и газоразрядную. Первая возникает

под действием высокой температуры, достаточно устойчива, существует долго, например, солнце,

звезды, шаровая молния.
Газоразрядная возникает под действием электрического разряда и устойчива только при наличии электрического поля, например, в газоосветительных трубках.
Плазму можно рассматривать как ионизированный газ, который подчиняется законам идеального газа.


Различают два основных вида плазмы: изотермическую и газоразрядную. Первая возникает под действием высокой температуры, достаточно устойчива, существует

Слайд 29Виды газовой плазмы
Плазма разделяется на идеальную и неидеальную, низкотемпературную и

высокотемпературную, равновесную и неравновесную.

Газовую плазму принято разделять на:
низкотемпературную —

до 100 тыс. градусов и
- высокотемпературную — до 100 млн. градусов.
Примером низкотемпературной плазмы является обыкновенный огонь.
Виды газовой плазмыПлазма разделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную, равновесную и неравновесную.Газовую плазму принято разделять

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика