not negligible
if DX is one unit
ПОЛУЛОГАРИФМИЧЕСКИЕ МОДЕЛИ
not negligible
ПОЛУЛОГАРИФМИЧЕСКИЕ МОДЕЛИ
16
ПОЛУЛОГАРИФМИЧЕСКИЕ МОДЕЛИ
. reg LGEARN S
----------------------------------------------------------------------------
Source | SS df MS Number of obs = 500
-----------+------------------------------ F( 1, 498) = 60.71
Model | 16.5822819 1 16.5822819 Prob > F = 0.0000
Residual | 136.016938 498 .273126381 R-squared = 0.1087
-----------+------------------------------ Adj R-squared = 0.1069
Total | 152.59922 499 .30581006 Root MSE = .52261
----------------------------------------------------------------------------
LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------+----------------------------------------------------------------
S | .0664621 .0085297 7.79 0.000 .0497034 .0832207
_cons | 1.83624 .1289384 14.24 0.000 1.58291 2.089571
----------------------------------------------------------------------------
b2
17
ПОЛУЛОГАРИФМИЧЕСКИЕ МОДЕЛИ
. reg LGEARN S
----------------------------------------------------------------------------
Source | SS df MS Number of obs = 500
-----------+------------------------------ F( 1, 498) = 60.71
Model | 16.5822819 1 16.5822819 Prob > F = 0.0000
Residual | 136.016938 498 .273126381 R-squared = 0.1087
-----------+------------------------------ Adj R-squared = 0.1069
Total | 152.59922 499 .30581006 Root MSE = .52261
----------------------------------------------------------------------------
LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------+----------------------------------------------------------------
S | .0664621 .0085297 7.79 0.000 .0497034 .0832207
_cons | 1.83624 .1289384 14.24 0.000 1.58291 2.089571
----------------------------------------------------------------------------
18
ПОЛУЛОГАРИФМИЧЕСКИЕ МОДЕЛИ
. reg LGEARN S
----------------------------------------------------------------------------
Source | SS df MS Number of obs = 500
-----------+------------------------------ F( 1, 498) = 60.71
Model | 16.5822819 1 16.5822819 Prob > F = 0.0000
Residual | 136.016938 498 .273126381 R-squared = 0.1087
-----------+------------------------------ Adj R-squared = 0.1069
Total | 152.59922 499 .30581006 Root MSE = .52261
----------------------------------------------------------------------------
LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------+----------------------------------------------------------------
S | .0664621 .0085297 7.79 0.000 .0497034 .0832207
_cons | 1.83624 .1289384 14.24 0.000 1.58291 2.089571
----------------------------------------------------------------------------
Если DX=1, то
not negligible
ПОЛУЛОГАРИФМИЧЕСКИЕ МОДЕЛИ
. reg LGEARN S
----------------------------------------------------------------------------
Source | SS df MS Number of obs = 500
-----------+------------------------------ F( 1, 498) = 60.71
Model | 16.5822819 1 16.5822819 Prob > F = 0.0000
Residual | 136.016938 498 .273126381 R-squared = 0.1087
-----------+------------------------------ Adj R-squared = 0.1069
Total | 152.59922 499 .30581006 Root MSE = .52261
----------------------------------------------------------------------------
LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------+----------------------------------------------------------------
S | .0664621 .0085297 7.79 0.000 .0497034 .0832207
_cons | 1.83624 .1289384 14.24 0.000 1.58291 2.089571
----------------------------------------------------------------------------
Если DX=1, то
not negligible
ПОЛУЛОГАРИФМИЧЕСКИЕ МОДЕЛИ
. reg LGEARN S
----------------------------------------------------------------------------
Source | SS df MS Number of obs = 500
-----------+------------------------------ F( 1, 498) = 60.71
Model | 16.5822819 1 16.5822819 Prob > F = 0.0000
Residual | 136.016938 498 .273126381 R-squared = 0.1087
-----------+------------------------------ Adj R-squared = 0.1069
Total | 152.59922 499 .30581006 Root MSE = .52261
----------------------------------------------------------------------------
LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------+----------------------------------------------------------------
S | .0664621 .0085297 7.79 0.000 .0497034 .0832207
_cons | 1.83624 .1289384 14.24 0.000 1.58291 2.089571
----------------------------------------------------------------------------
Если DX=1, то
not negligible
ПОЛУЛОГАРИФМИЧЕСКИЕ МОДЕЛИ
. reg LGEARN S
----------------------------------------------------------------------------
Source | SS df MS Number of obs = 500
-----------+------------------------------ F( 1, 498) = 60.71
Model | 16.5822819 1 16.5822819 Prob > F = 0.0000
Residual | 136.016938 498 .273126381 R-squared = 0.1087
-----------+------------------------------ Adj R-squared = 0.1069
Total | 152.59922 499 .30581006 Root MSE = .52261
----------------------------------------------------------------------------
LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------+----------------------------------------------------------------
S | .0664621 .0085297 7.79 0.000 .0497034 .0832207
_cons | 1.83624 .1289384 14.24 0.000 1.58291 2.089571
----------------------------------------------------------------------------
If DX is one unit,
not negligible
. reg LGEARN S
Source | SS df MS Number of obs = 540
-------------+------------------------------ F( 1, 538) = 140.05
Model | 38.5643833 1 38.5643833 Prob > F = 0.0000
Residual | 148.14326 538 .275359219 R-squared = 0.2065
-------------+------------------------------ Adj R-squared = 0.2051
Total | 186.707643 539 .34639637 Root MSE = .52475
------------------------------------------------------------------------------
LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
S | .1096934 .0092691 11.83 0.000 .0914853 .1279014
_cons | 1.292241 .1287252 10.04 0.000 1.039376 1.545107
------------------------------------------------------------------------------
. reg LGEARN S
----------------------------------------------------------------------------
Source | SS df MS Number of obs = 500
-----------+------------------------------ F( 1, 498) = 60.71
Model | 16.5822819 1 16.5822819 Prob > F = 0.0000
Residual | 136.016938 498 .273126381 R-squared = 0.1087
-----------+------------------------------ Adj R-squared = 0.1069
Total | 152.59922 499 .30581006 Root MSE = .52261
----------------------------------------------------------------------------
LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------+----------------------------------------------------------------
S | .0664621 .0085297 7.79 0.000 .0497034 .0832207
_cons | 1.83624 .1289384 14.24 0.000 1.58291 2.089571
----------------------------------------------------------------------------
ПОЛУЛОГАРИФМИЧЕСКИЕ МОДЕЛИ
. reg LGEARN S
Source | SS df MS Number of obs = 540
-------------+------------------------------ F( 1, 538) = 140.05
Model | 38.5643833 1 38.5643833 Prob > F = 0.0000
Residual | 148.14326 538 .275359219 R-squared = 0.2065
-------------+------------------------------ Adj R-squared = 0.2051
Total | 186.707643 539 .34639637 Root MSE = .52475
------------------------------------------------------------------------------
LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
S | .1096934 .0092691 11.83 0.000 .0914853 .1279014
_cons | 1.292241 .1287252 10.04 0.000 1.039376 1.545107
------------------------------------------------------------------------------
. reg LGEARN S
----------------------------------------------------------------------------
Source | SS df MS Number of obs = 500
-----------+------------------------------ F( 1, 498) = 60.71
Model | 16.5822819 1 16.5822819 Prob > F = 0.0000
Residual | 136.016938 498 .273126381 R-squared = 0.1087
-----------+------------------------------ Adj R-squared = 0.1069
Total | 152.59922 499 .30581006 Root MSE = .52261
----------------------------------------------------------------------------
LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------+----------------------------------------------------------------
S | .0664621 .0085297 7.79 0.000 .0497034 .0832207
_cons | 1.83624 .1289384 14.24 0.000 1.58291 2.089571
----------------------------------------------------------------------------
ПОЛУЛОГАРИФМИЧЕСКИЕ МОДЕЛИ
Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть