Слайд 1Разработали:
к.т.н., доцент Исакова Н.В.
студент гр. 1015 Хазиев Р.Р.
Инструменты качества
Слайд 2 Один из базовых принципов управления
качеством состоит
в принятии решений на основе
фактов.
Наиболее полно это решается методом моделирования процессов инструментами математической статистики.
Слайд 3
Однако, современные статистические методы довольно
сложны для понимания и использования.
Для этой цели были
разработаны семь простых инструментов статистического контроля качества.
Слайд 5Контрольный листок
Контрольный листок – инструмент для сбора данных и автоматического
их упорядочения для облегчения дальнейшего использования собранной информации
Слайд 6Виды контрольных листков:
Для регистрации распределения измеряемого параметра в ходе производственного
процесса
Для регистрации видов дефектов
Для оценки воспроизводимости работоспособности технологического процесса
Слайд 7Контрольный листок для регистрации измеряемого параметра в ходе производственного процесса
Слайд 8Контрольный листок видов дефектов
Слайд 9Контрольный листок для оценки воспроизводимости и работоспособности техпроцесса
Слайд 10Контрольные карты
Инструмент, позволяющий отслеживать ход протекания процесса и воздействовать на
него, предупреждая его отклонения от предъявляемых к процессу требований
Слайд 12Типы контрольных карт
( X-R) – карта: показателями качества служат непрерывные
величины (длина, вес, концентрация),несущие наибольшее количество информации о процессе
X -
карта: данные о процессе поступают через большие интервалы времени или группирование данных неэффективно. Подгрупп нет - нельзя вычислить значение R
Слайд 13рn-карта, р-карта: применяются в тех случаях, когда показатель качества представлен
числом дефектных изделий или долей
c – карта, u –
карта: используется в тех случаях, когда анализ и управление процессом ведутся по дефектам в продукции
Слайд 14Контрольные карты
Позволяют определить устойчивость технологического процесса и время нарушения
этого состояния
Исключают необычную вариацию, отделяя вариации, обусловленные определенными причинами, от
тех, что обусловлены случайными причинами
Слайд 15Контрольные карты
применяются
для анализа состояния техпроцесса с целью обнаружения
дестабилизирующих воздействий,
для отслеживания текущего состоянием и остановками или регулировками техпроцесса.
Слайд 16Контрольная карта управляемого процесса
значения характеристики (показателя качества) находятся внутри контрольных
пределов, представляющих собой максимально допустимые пределы изменения значений контролируемого показателя
качества
Слайд 17Контрольная карта неуправляемого процесса
значения характеристики (показателя качества) находятся за контрольными
пределами или принимают какую-нибудь необычную форму
Слайд 18это проявление такого состояния, когда точки неизменно оказываются по одну
сторону от средней линии; число таких точек называется длиной серии.
Оценка результата
по контрольной карте.
Серия
Слайд 19Точки образуют непрерывно повышающуюся или понижающуюся линию
Тренд
46,97
46,972
46,974
46,976
46,978
46,98
46,982
46,984
46,986
46,988
ВКП
НКП
ЦЛ
+2,5
у
+2,5
у
Слайд 20Имеются точки, которые приближаются к контрольным пределам ±3, причем если
2 или 3 точки оказываются за линиями ±2,5 σ, то
такой случай рассматривается как ненормальный
Приближение к контрольным
пределам
Слайд 21Большинство точек концентрируется внутри центральных линий 1.5σ, делящих пополам расстояние
между центральной линией и каждой из контрольных линий. Возможно, это
обусловлено неподходящим способом разбиения на подгруппы.
Приближение к центральной линии
Слайд 22На ломаной линии имеются периодически повторяющиеся подъемы и спады через
примерно одинаковые интервалы времени. В этом случае процесс также считается
неустойчивым.
Периодичность
Слайд 23Метод стратификации (расслаивание данных)
Метод расслаивания исследуемых статистических данных - инструмент,
позволяющий произвести селекцию данных, отражающую требуемую информацию о процессе.
Слайд 24Метод 5М
учитываются факторы:
- человека (man); - машины (machine);
- материала
(material); - метод (method);
- измерения (measurement).
В производственных процессах часто используется
метод 5М
Слайд 25Диаграмма Парето
Диаграмма Парето — инструмент, позволяющий распределить усилия для разрешения
возникающих проблем и выявить основные причины, с которых нужно начинать
действовать
Слайд 26Принцип Парето
- установление приоритетов в очередности проведения работ;
- приоритет
отдается тем действиям, которые внесут наибольший вклад
в
процесс улучшения.
Слайд 27Диаграмма Парето:
По результатам деятельности - выявляет главную проблему и отражает
нежелательные результаты деятельности по следующим критериям:
·
Качество
· Себестоимость
· Сроки поставок
· Безопасность
По причинам - отражает причины проблем, возникающих в ходе производства, и используется для выявления главной из них:
· Рабочий
· Оборудование
· Сырье
· Метод работы
Слайд 28Построение диаграммы Парето
1. Определение проблем,
подлежащих исследованию, и способа сбора данных
2. Разработка
контрольного листка для регистрации данных с перечнем видов собираемой информации
3 . Заполнение листка регистрации данных и подсчет итогов.
4. Разработка бланка таблицы
5. Расположение данных, полученных по каждому проверяемому признаку, в порядке значимости и заполнение таблицы
6. Построение одной горизонтальной и двух вертикальных осей
7. Построение столбиковой диаграммы
8. Построение кумулятивной кривой (кривой Парето)
Слайд 291. Определение проблем
а) Определение типа проблемы (дефектные изделия, потери в
деньгах, несчастные случаи)
б) Определение типа данных и способа их
классификации (по видам дефектов, по месту их появления, по процессам, по станкам, по рабочим, по технологическим причинам, по оборудованию, по методам измерения и применяемым измерительным средствам)
в) Установление метода и периода сбора данных
Слайд 302. Разработка контрольного листка
Сбор данных.
Выбор количества продукции, произведенной за
определенный период времени (не менее 30 значений, иначе диаграмма может
быть менее информативной).
Построение контрольного листка.
Слайд 313 . Заполнение листка регистрации данных
Подсчет частоты и количество каждого
фактора
Формирование факторов по убывающей.
Слайд 324. Разработка бланка таблицы
5. Расположение данных, полученных по каждому проверяемому
признаку, в порядке значимости и заполнение таблицы
в первой графе необходимо
указать анализируемые факторы;
во второй – анализируемые данные, характеризующие число случаев обнаружения анализируемых факторов в рассматриваемый период;
в третьей – суммарное число факторов по видам;
в четвертой – их процентное соотношение;
в пятой – накопленный процент случаев обнаружения факторов
Слайд 33Исходные данные для построения диаграммы Парето
Слайд 346-8. Построение столбиковой диаграммы и кривой Парето
Последовательно
суммируя высоту всех
столбиков диаграммы
строится
кумулятивная
кривая.
Анализ диаграммы
Парето:
- Необходимо
заниматься в первую
очередь тремя
несоответствиями:
1) черновиной;
2) сколами;
3) трещинами.
Слайд 35Комментарии
По построению диаграммы Парето
1. Составляется много диаграмм Парето. Суть
проблемы можно уловить, наблюдая явление с разных точек зрения
2.
Данные желательно представить в денежном выражении. Исследование неэффективно, если данные нельзя выразить в денежном эквиваленте. Затраты — важный критерий измерений в управлении.
По использованию диаграмм Парето
1. Диаграмма Парето расценивается
как эффективное средство решения проблем при рассмотрении только
немногочисленных существенно важных причин.
2. Нежелательный фактор устраняется незамедлительно независимо от того, каким бы незначительным он ни был.
Слайд 36Причинно-следственная диаграмма (диаграмма Исикавы)
Причинно-следственная диаграмма — инструмент, позволяющий выявить наиболее
существенные факторы (причины), влияющие на конечный результат (следствие).
Слайд 37Для построения диаграммы необходимо:
Слайд 38Построение причинно-следственной диаграммы
1. Определить показатель качества.
2 . Записать выбранный показатель
качества в середине правого
края листа бумаги. Слева направо провести прямую
линию
("хребет").
Указать главные причины и соединить с "хребтом" стрелками.
3 . Записать (вторичные) причины. Записать причины третичного
порядка, которые влияют на вторичные причины.
4 . Проранжировать причины (факторы) по их значимости, используя
для этого диаграмму Парето, и выделить особо важные, которые
оказывают наибольшее влияние на показатель качества.
5. Нанести на диаграмму всю необходимую информацию: ее
название; наименование изделия, процесса или группы процессов;
имена участников процесса; дату и т.д.
Слайд 39Причинно-следственная диаграмма для производственного процесса
3
5
6
4
8
2
1
7
1 — система причинных факторов; 2
— основные факторы производства;
3 — материалы; 4 — операторы; 5
— оборудование, включая инструменты;
6 — методы операций; 7 — измерения; 8— показатели качества;
Слайд 40Причинно-следственная диаграмма для учебного процесса
Слайд 41Диаграммы рассеивания
Диаграмма рассеивания — инструмент, позволяющий определить вид и тесноту
связи между парами соответствующих переменных.
Слайд 42Переменные относятся:
а) к характеристике качества и влияющему на нее фактору
б) к двум различным характеристикам качества
в) к двум
факторам, влияющим на одну характеристику качества.
Слайд 43Построение диаграммы рассеивания
Этап 1. Сбор парных данных (25-30 пар)
и расположение их в таблицу.
Этап 2 . Нахождение максимальных
и минимальных значений. Выбор шкалы на горизонтальной и вертикальной осях.
Этап 3 . Построение графика, нанесение данных.
Этап 4 . Нанесение всех необходимых обозначений. Данные, отраженные на диаграмме, должны быть понятны при прочтении.
Слайд 44Примеры диаграмм рассеивания
Диаграмма рассеивания:
Взаимосвязь показателей качества
практически отсутствует.
Слайд 45Диаграмма рассеивания:
Имеется прямая взаимосвязь между показателями качества
Слайд 46Диаграмма рассеивания:
Имеется обратная взаимосвязь между показателями качества.
Слайд 47Контрольный листок для построения
диаграммы рассеивания
Слайд 48Построение диаграммы рассеивания
по контрольному листку
Слайд 49Корреляционный анализ
Прямая корреляция
Контролируя причинный параметр х, можно управлять
значением параметра качества у.
х
у
Слайд 50
При увеличении х увеличивается у, но разброс у
велик по отношению к значению х. Контролировать фактор х
недостаточно, необходимо иметь в виду другие факторы, оказывающие влияние на у.
Легкая прямая корреляция
х
у
Слайд 51При увеличении х у уменьшается.
Если контролировать х, характеристика
у может оставаться стабильной.
Обратная (отрицательная) корреляция
х
у
Слайд 52 При увеличении х у уменьшается, но велик
разброс значений у, соответствующих фиксированному значению х, т.е. отсутствует стабильность
в значениях y
Легкая обратная корреляция
х
у
Слайд 53 Зависимости между х и у не наблюдается. Необходимо
продолжить поиск факторов, коррелирующих с у, исключив из этого поиска
фактор х.
Отсутствие корреляции
х
у
Слайд 54
Криволинейная корреляция может использоваться
для определения оптимального соотношения x и y.
Криволинейная корреляция
х
у
Слайд 55Гистограммы
Гистограмма - инструмент, позволяющий зрительно оценить закон распределения статистических данных.
Слайд 56Типы гистограмм
1. Обычный тип
2. Положительно скошенное распределение
Слайд 57Типы гистограмм
3. Распределение с обрывом слева
4. Плато
Слайд 58Типы гистограмм
5. Двухпиковый тип
6. Распределение с изолированным пиком
Слайд 59Обычный тип (симметричный или колоколообразный).
Среднее значение гистограммы приходится на
середину размаха данных
Форма симметрична
Распространенный тип гистограмм
Встречается при нормальном протекании процесса
Слайд 60Положительно (отрицательно) скошенное распределение
Среднее значение гистограммы локализуется слева (справа) от
центра размаха
Форма асимметрична
Встречается, когда нижняя (верхняя) граница регулируется либо теоретически,
либо по значению допуска или когда левое (правое) значение недостижимо.
Слайд 61Распределение с обрывом слева (справа).
Средне арифметическое гистограммы локализуется далеко слева
(справа) от центра размаха
Форма асимметрична
Встречаются при 100%-ном контроле изделий из-за
плохой воспроизводимости процесса, а также когда появляется резко положительная (отрицательная) асимметрия.
Слайд 62Плато (равномерное и прямоугольное распределения).
Частоты в разных классах образуют плато
Все
классы имеют одинаковые ожидаемые частоты с конечными классами
Встречается в комбинации
нескольких равновероятностных распределений, имеющих различное среднее арифметическое. Анализ такой гистограммы проводится с помощью метода расслоения данных.
Слайд 63Двухпиковый (бимодальный) тип
В окрестности центра диапазона данных частота низкая, но
есть по пику с каждой стороны
Встречается, когда смешиваются два
распределения с далеко отстоящими средними значениями. Для решения проблемы применяют стратификацию.
Слайд 64Распределение с изолированным пиком.
Наряду с распределением обычного типа появляется маленький
изолированный пик
Встречается при наличии малых включений данных из другого распределения
в случае нарушения нормального процесса, появления ошибки измерения или просто включения данных из другого процесса.
Слайд 65Статистические методы оценки процессов, предполагающие использование инструментов качества, реализуются при
оценке устойчивости технологических процессов.