Разделы презентаций


Solution Methods for Bilevel Optimization

OverviewDefine a bilevel problem and its general mathematical formDiscuss optimality (KKT-type) conditionsReformulate general bilevel problem as a system of equationsConsider iterative (descent direction) methods applicable to solve this reformulationLook at the

Слайды и текст этой презентации

Слайд 1Solution Methods for Bilevel Optimization
Andrey Tin
A.Tin@soton.ac.uk
School of Mathematics

Supervisors: Dr Alain

B. Zemkoho, Professor Jörg Fliege


Solution Methods for Bilevel OptimizationAndrey TinA.Tin@soton.ac.ukSchool of MathematicsSupervisors: Dr Alain B. Zemkoho, Professor Jörg Fliege

Слайд 2Overview
Define a bilevel problem and its general mathematical form
Discuss optimality

(KKT-type) conditions
Reformulate general bilevel problem as a system of equations
Consider

iterative (descent direction) methods applicable to solve this reformulation
Look at the numerical results of using Levenberg-Marquardt iterative method
OverviewDefine a bilevel problem and its general mathematical formDiscuss optimality (KKT-type) conditionsReformulate general bilevel problem as a

Слайд 3Stackelberg Game (Bilevel problem)
Players: the Leader and the Follower
The Leader

is first to make a decision
Follower reacts optimally to Leader’s

decision
The payoff for the Leader depends on the follower’s reaction
Stackelberg Game (Bilevel problem)Players: the Leader and the FollowerThe Leader is first to make a decisionFollower reacts

Слайд 4Example
Taxation of a factory
Leader – government
Objectives: maximize profit and minimize

pollution
Follower – factory owner
Objectives: maximize profit

ExampleTaxation of a factoryLeader – governmentObjectives: maximize profit and minimize pollutionFollower – factory ownerObjectives: maximize profit

Слайд 5General structure of a Bilevel problem
 

General structure of a Bilevel problem 

Слайд 6Important Sets
 

Important Sets 

Слайд 7Solution methods
Vertex enumeration in the context of Simplex method
Kuhn-Tucker approach
Penalty

approach
Extract gradient information from a lower objective function to compute

directional derivatives of an upper objective function







Solution methodsVertex enumeration in the context of Simplex methodKuhn-Tucker approachPenalty approachExtract gradient information from a lower objective

Слайд 8Concept of KKT conditions
 

Concept of KKT conditions 

Слайд 9Value function reformulation
 

Value function reformulation 

Слайд 10KKT for value function reformulation
 
 

KKT for value function reformulation  

Слайд 11Assumptions
 

Assumptions 

Слайд 12KKT-type optimality conditions for Bilevel

KKT-type optimality conditions for Bilevel

Слайд 13Further Assumptions (for simpler version)
 

Further Assumptions (for simpler version) 

Слайд 14Simpler version of KKT-type conditions
 

Simpler version of KKT-type conditions 

Слайд 15NCP-Functions
 

NCP-Functions 

Слайд 16Problems with differentiability
Fischer-Burmeister is not differentiable at 0

Problems with differentiabilityFischer-Burmeister is not differentiable at 0

Слайд 18Simpler version with perturbed Fischer-Burmeister NCP functions
 
 

Simpler version with perturbed Fischer-Burmeister NCP functions  

Слайд 19Iterative methods
 

Iterative methods 

Слайд 20Newton method
 

Newton method 

Слайд 21 
Pseudo inverse
 
 

 Pseudo inverse  

Слайд 22Gauss-Newton method
 

Gauss-Newton method 

Слайд 23Singular Value Decomposition (SVD)
 

Singular Value Decomposition (SVD) 

Слайд 24SVD for wrong direction
 

SVD for wrong direction 

Слайд 25SVD for right direction
 

SVD for right direction 

Слайд 26Levenberg-Marquardt method
 

Levenberg-Marquardt method 

Слайд 27Numerical results

Numerical results

Слайд 28Convergence
Talk about starting point condition
Explain why it’s easier to prove

convergence for Newton and Gauss-Newton
Interest for future analysis

ConvergenceTalk about starting point conditionExplain why it’s easier to prove convergence for Newton and Gauss-NewtonInterest for future

Слайд 29Plans for further work
 

Plans for further work 

Слайд 30Plans for further work
6. Construct the own code for Levenberg-Marquardt

method in the context of solving bilevel problems within defined

reformulation.
7. Search for good starting point techniques for our problem. 8. Do the numerical calculations for the harder reformulation defined .
9. Code Newton method with pseudo-inverse.
10. Solve the problem assuming strict complementarity
11. Look at other solution methods.
Plans for further work6. Construct the own code for Levenberg-Marquardt method in the context of solving bilevel

Слайд 31Thank you!

Thank you!

Слайд 32References
 

References 

Слайд 33References
 

References 

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика