Разделы презентаций


Some unusual subwavelength resonances and effects: EIT, Fano -resonance,

Содержание

Electromagnetically induced transparency - is a effect of a coherent optical nonlinearity which renders a medium transparent window over a narrow spectral range within an absorption line. Electromagnetically Induced Transparency

Слайды и текст этой презентации

Слайд 1 Some unusual subwavelength resonances and effects: EIT, Fano-resonance, Anapoles.

Review

Some unusual subwavelength resonances and effects: EIT, Fano-resonance, Anapoles. Review

Слайд 2Electromagnetically induced transparency - is a effect of a coherent

optical nonlinearity which renders a medium transparent window over a

narrow spectral range within an absorption line.

Electromagnetically Induced Transparency

Electromagnetically induced transparency - is a effect of a coherent optical nonlinearity which renders a medium transparent

Слайд 3Split rings with asymmetry
(Metamaterial Induced Transparency)
2. Plasmonic molecule with

Fano-resonance
(Plasmon Induced Transparency)
“Trapped mode” resonance
Bright/dark mode resonance
Metamaterial-Induced Transparency: Sharp Fano

Resonances and Slow Light //Nikitas Papasimakis and Nikolay I. Zheludev //Optics and Photonics News Vol. 20, Issue 10, pp. 22-27 (2009),

Plasmon-Induced Transparency in Metamaterials // Shuang Zhang, Dentcho A. Genov, Yuan Wang, Ming Liu, and Xiang Zhang // PRL 101, 047401 (2008)

Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry // V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis and N. I. Zheludev // PRL 99, 147401 (2007)

How to see EIT in metamaterials

Split rings with asymmetry (Metamaterial Induced Transparency)2. Plasmonic molecule with Fano-resonance(Plasmon Induced Transparency)“Trapped mode” resonanceBright/dark mode resonanceMetamaterial-Induced

Слайд 4Fano resonance is a type of resonant scattering phenomenon that

gives rise to an asymmetric line-shape. Interference between a background

and a resonant scattering process produces the asymmetric line-shape.

Fano- resonance

Fano resonance is a type of resonant scattering phenomenon that gives rise to an asymmetric line-shape. Interference

Слайд 5The Fano resonance in metamaterials associated with mutual excitation of

at least two scattering channels - modes occurring in the

inclusions of metamaterials. This is possible due to the collective excitation of dark mode, which interferes with a resonances bright mode. As a result of such interference, it occurs asymmetrical peak of the transmission of electromagnetic waves through the layer of the metamaterial. Usually, bright mode has a strong connection with the incident plane wave. In contrast, dark mode weakly coupled with the incident plane wave and can not be directly excited it. Thus, in the vicinity of the resonance frequency, constructive and destructive interference between these modes are occured, which manifests itself as acute asymmetrical peak Fano- resonance in the scattering metamolecules

Fano- resonance

The Fano resonance in metamaterials associated with mutual excitation of at least two scattering channels - modes

Слайд 6Nature Mat. 9 707
Plasma frequency
Fano- resonance in the metallic nano-sphere

Nature Mat. 9 707Plasma frequencyFano- resonance in the metallic nano-sphere

Слайд 7Nature Mat. 9 707
A narrow spectral line

Frequency scanning

High Q-factor

Strong field

localization

Sensing

Fano- resonance

Nature Mat. 9 707A narrow spectral lineFrequency scanningHigh Q-factorStrong field localizationSensingFano- resonance

Слайд 8Nano Lett. 8 3983
Fano- resonance. Other types of the particles.

System of the nano-disks

Nano Lett. 8 3983Fano- resonance. Other types of the particles. System of the nano-disks

Слайд 9Nano Lett. 10 2721
Science 328 1135
Fano- resonance. Other types of

the particles. Nano-clusters of Ag, Au

Nano Lett. 10 2721Science 328 1135Fano- resonance. Other types of the particles. Nano-clusters of Ag, Au

Слайд 10Vortex resonance- occurs in plasmonic particles and accompanied by vortex

distribution of the Poynting vector close to the nano-particle and

penetrated the fields inside particle. Strong retardation, absorbtion.

2. Vortex/whirpool resonances in nano-particles

Vortex resonance- occurs in plasmonic particles and accompanied by vortex distribution of the Poynting vector close to

Слайд 11где
The strong field conditions:

c

field inside particle
Vortex/whirpool resonances in nano-sphere. Extinction’s coefficients

гдеThe strong field conditions:c

Слайд 12Y- Neiman function
The strong field localization conditions
J. Opt. Soc. Am.

B 24 A89
Opt. Express 13 8372
Phys. Rev. Lett. 97 263902

Vortex/whirpool

resonances in nano-sphere. Extinction’s coefficients
Y- Neiman functionThe strong field localization conditionsJ. Opt. Soc. Am. B 24 A89Opt. Express 13 8372Phys. Rev.

Слайд 13Opt. Express 13 8372
Phys. Rev. Lett. 97 263902

Perfect absorption

Opt. Express 13 8372Phys. Rev. Lett. 97 263902Perfect absorption

Слайд 14Vortex/whirpool resonances in nano-sphere. Examples. Poynting Vector

Vortex/whirpool resonances in nano-sphere. Examples. Poynting Vector

Слайд 15Vortex/whirpool resonances in nano-sphere. Examples. Poynting Vector

Vortex/whirpool resonances in nano-sphere. Examples. Poynting Vector

Слайд 16Vortex/whirpool resonances. Example of nano- ellipsoid . Poynting Vector

Vortex/whirpool resonances. Example of nano- ellipsoid . Poynting Vector

Слайд 17Opt. Express 18 19665
Vortex/whirpool resonances. Example of Yin and yang

Symbol

Opt. Express 18 19665Vortex/whirpool resonances. Example of Yin and yang Symbol

Слайд 18Opt. Express 18 19665
Vortex/whirpool resonances. Example of Yin and Yang

Symbol. Vector Poynting

Opt. Express 18 19665Vortex/whirpool resonances. Example of Yin and Yang Symbol. Vector Poynting

Слайд 19Opt. Express 18 19665
Vortex/whirpool resonances. Example of Yin and yang

Symbol. Fields distributions

Opt. Express 18 19665Vortex/whirpool resonances. Example of Yin and yang Symbol. Fields distributions

Слайд 20New J. Phys. 12 063006
Vortex/whirpool resonances. Example of a model

of a Black hole. Vector Poynting

New J. Phys. 12 063006Vortex/whirpool resonances. Example of a model of a Black hole. Vector Poynting

Слайд 21Applications:

Strong field localization

As element of delay line

High

Q-factor resonator

Element of the nano-antennas?

Vortex/whirpool resonances

Applications: Strong field localization As element of delay line High Q-factor resonator Element of the nano-antennas?Vortex/whirpool resonances

Слайд 223. Toroidal Dipole in Metamaterials
What is toroidal dipole
T. Kaelberer

et al, Science 330, 1510 (2010)
B. Zel'dovich, Sov. Phys. JETP,

6,1184 (1958)

3. Toroidal Dipole in MetamaterialsWhat is toroidal dipole T. Kaelberer et al, Science 330, 1510 (2010)B. Zel'dovich,

Слайд 23Toroidal dipole in nature
Y. B. Zel'dovich, 1958
Naumov I, at al.,

2004
M. Kläui at al., 2003
Y. F. Popov at al., 1998
Y.

V. Kopaev at al., 2009
L. Ungur at al., 2012
Ceulemans at al., 1998
A. Karsisiotis at al., 2013




Toroidal dipole in natureY. B. Zel'dovich, 1958Naumov I, at al., 2004M. Kläui at al., 2003Y. F. Popov

Слайд 24First demonstration of toroidal response by metamaterials
T. Kaelberer et al,

Science 330, 1510 (2010)

First demonstration of toroidal response by metamaterialsT. Kaelberer et al, Science 330, 1510 (2010)

Слайд 25Toroidal response in multipoles expansion. Radiating power of multipoles.
P- Electric

dipole moment
M- Magnetic dipole moment
T- toroidal dipole moment
Q- Electric quadrupole

moment
M – Magnetic quadrupole moment


j- current density

T. Kaelberer et al, Science (2010)
E. E. Radescu and G. Vaman, PRE (2002)

We need to consider this term in order to correctly describe the characteristics of toroidal objects.

Toroidal response in multipoles expansion. Radiating power of multipoles.P- Electric dipole momentM- Magnetic dipole momentT- toroidal dipole

Слайд 26Family of the toroidal metamolecules. Complicated disign?

Family of the toroidal metamolecules. Complicated disign?

Слайд 272. Toroidal response in dielectric metamaterials- without Joule losses
T. Kaelberer

et al, Science 330, 1510 (2010)
High index dielectrics :

In

microwave- BSTO ceramics
S. O'Brien and J. B. Pendry, 2002
L. Peng and al., 2007



m

2. Toroidal response in dielectric metamaterials- without Joule lossesT. Kaelberer et al, Science 330, 1510 (2010)High index

Слайд 28 LiTaO3 cluster: Reflection and Transmission; Radiated power of multipoles
Closed

magnetic field- Toroidal response.
No fileds between cylinders
Strong localization of E-

field between cylinders- Exitation of Nonlinearities
LiTaO3 cluster: Reflection and Transmission; Radiated power of multipolesClosed magnetic field- Toroidal response.No fileds between cylindersStrong

Слайд 29Non-Trivial Excitation: P=ikT and analog of Electromagnetically induced transparency


Fedotov et al., Scientific Reports 3, 2967
Afanasiev,

G. N. & Stepanovsky, Y. P., J. Phys. A Math. Gen. 28, 4565

Interference of P and T gives EIT and symmetrical
Peak of transmission

Non-Trivial Excitation: P=ikT and analog of Electromagnetically induced transparency    Fedotov et al., Scientific Reports

Слайд 30For Electric dipole
For Toroidal dipole
Non-Trivial non-radiating toroidal source
Fedotov et al.,

Scientific Reports 3, 2967
Afanasiev, G. N. & Stepanovsky, Y. P., J.

Phys. A Math. Gen. 28, 4565
For Electric dipoleFor Toroidal dipoleNon-Trivial non-radiating toroidal sourceFedotov et al., Scientific Reports 3, 2967 Afanasiev, G. N. & Stepanovsky,

Слайд 31Non-Trivial Excitation: P=ikT

P=ikT
E and H vanish in

FAR-field zone
Fedotov et al., Scientific Reports 3, 2967
Afanasiev, G.

N. & Stepanovsky, Y. P., J. Phys. A Math. Gen. 28, 4565
Non-Trivial Excitation: P=ikT   P=ikTE and H vanish in FAR-field zoneFedotov et al., Scientific Reports 3,

Слайд 32Поля точечного анаполя, ближняя зона: P=ikT
P=ikT
E и H исчезают везде,

кроме r=0:
Бесконечная добротность?
δ- функция
Q=0W/Pd
Nemkov et al., Non-radiating sources, dynamic

anapole and Aharonov-Bohm effect, arxiv 1605.09033
Basharin et al., Extremely High Q-factor metamaterials due to Anapole Excitation, arxiv 1608.03233

Поля точечного анаполя, ближняя зона: P=ikTP=ikTE и H исчезают везде, кроме r=0:Бесконечная добротность? δ- функцияQ=0W/PdNemkov et al.,

Слайд 35Vortices in nano-particles give possibilities for absorption and localization
Fano

– resonance assymetric peak
Toroidal response in metamaterials is novel very

promising candidate for optics

Conclusions

Thank you and questions?

Vortices in nano-particles give possibilities for absorption and localization Fano – resonance assymetric peakToroidal response in metamaterials

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика