Разделы презентаций


Тема №2 Задача 1 Задача 4 Задача 2 Задача 3 Задача 5 Задача 6 Задача 7 Задача

Содержание

ПотенциалРазность потенциалов между двумя точками электрического поля определяется работой, которую надо совершить, чтобы единицу заряда перенести из одной точки в другуюПотенциал точечного зарядагде r – расстояние от заряда.Напряженность электрического поля и

Слайды и текст этой презентации

Слайд 1Тема №2
Задача 1
Задача 4
Задача 2
Задача 3
Задача 5
Задача 6
Задача 7
Задача

8
Задача 9
Задача 10
Задача 11
Задача 12
Потенциал
Теоретическое введение

Тема №2Задача 1Задача 4Задача 2 Задача 3Задача 5Задача 6Задача 7Задача 8Задача 9Задача 10Задача 11Задача 12ПотенциалТеоретическое введение

Слайд 2Потенциал

Разность потенциалов между двумя точками электрического поля определяется
работой, которую

надо совершить, чтобы единицу заряда перенести из одной
точки в

другую

Потенциал точечного заряда

где r – расстояние от заряда.

Напряженность электрического поля и потенциал связаны соотношением

где U – разность потенциалов между пластинами конденсатора,
d – расстояние между ними.

1) Шаровой конденсатор

Разность потенциалов между внутренней сферой и какой-либо точкой внутри
конденсатора, удаленной на расстояние r от центра конденсатора, равна

где а – радиус внутренней сферы.

2) Плоский конденсатор

Разность потенциалов между положительно заряженной пластиной и произвольной
точкой, удаленной на расстояние х от нее, равна

ПотенциалРазность потенциалов между двумя точками электрического поля определяется работой, которую надо совершить, чтобы единицу заряда перенести из

Слайд 33) Цилиндрический конденсатор
Разность потенциалов между внутренним цилиндром и произвольной точкой

между
электродами равна
где а – радиус внутреннего цилиндра,
q1 –

заряд внутреннего цилиндра на единицу длины.
3) Цилиндрический конденсаторРазность потенциалов между внутренним цилиндром и произвольной точкой между электродами равна где а – радиус

Слайд 4Шарик массой m=40 мг, заряженный положительным зарядом q1=1нКл, движется со


скоростью v=10см/с На какое расстояния r может приблизиться шарик к


положительному заряду q2=1,3 нКл?

Условие задачи

Задача №1

Шарик массой m=40 мг, заряженный положительным зарядом q1=1нКл, движется со скоростью v=10см/с На какое расстояния r может

Слайд 5Дано:
r – ?
Решение:
W2=0
выразим r
где 1 – потенциал поля

заряда в той точке, где
шарик обладал кинетической энергией
2–

потенциал поля заряда в той точке, где шарик остановился

Подставляем (2) в (1)

получим

Ответ: шарик сможет приблизиться к положительному точечному заряду на расстояние 6 см.

q2

y

x

q1

r

Дано:r – ? Решение:W2=0выразим r где 1 – потенциал поля заряда в той точке, где шарик обладал

Слайд 6На какое расстояние могут сблизиться два электрона, если они движутся

навстречу
друг другу с относительной скоростью 108 см/с?
Условие задачи
Задача №2

На какое расстояние могут сблизиться два электрона, если они движутся навстречу друг другу с относительной скоростью 108

Слайд 7Ответ: два электрона, летящие с относительной скоростью =106 м/с могут

сблизиться до
расстояния
Дано:
r – ?
Решение:
где 1 – потенциал

поля электрона в той точке,
где другой электрон обладал кинетической энергией

выразим r

Подставим (2) в (1), получаем
с учетом того, что 2=0:

r

y

x

Ответ: два электрона, летящие с относительной скоростью =106 м/с могут сблизиться до расстояния Дано:r – ? Решение:где

Слайд 8Два шарика с зарядами q1=6,6нКл и q2=13,3 нКл находятся на

расстоянии r1=40см.
Какую работу нужно совершить, чтобы сблизить их до

расстояния r2=25см?

Условие задачи

Задача №3

Два шарика с зарядами q1=6,6нКл и q2=13,3 нКл находятся на расстоянии r1=40см. Какую работу нужно совершить, чтобы

Слайд 9Дано:
Решение:
А – ?
Получим
Второй способ
Первый способ

потенциальная энергия
заряда

q2 в точках 1 и 2 соответственно.

где 2, и 1 – потенциалы электростатического
поля заряда в точках 2 и 1 соответственно

Ответ: чтобы шарики сблизить до расстояния r2=25 см,
надо совершить работу А=


Дано:Решение:А – ? ПолучимВторой способПервый способ

Слайд 10Какая работа А совершается при перенесении точечного заряда q=20нКл из


бесконечности в точку, находящуюся на расстоянии 1см от поверхности шара

радиусом 1см с поверхностной плотностью заряда  =10-5 Кл/м2?

=10-5 Кл/м2?

Условие задачи

Задача №4

Какая работа А совершается при перенесении точечного заряда q=20нКл из бесконечности в точку, находящуюся на расстоянии 1см

Слайд 11Дано:
Решение:
А – ?
где S – площадь поверхности,
qш –

заряд, сосредоточенный на ней.
S=4R2
При переносе заряда q из

точки с потенциалом r
в бесконечность работа электрических сил

Ответ: работа электрических сил при переносе точечного заряда q из
бесконечности в данную точку равна 1,1310-4 Дж.

x

q

r

σ

R

Дано:Решение:А – ? где S – площадь поверхности, qш – заряд, сосредоточенный на ней. S=4R2 При переносе

Слайд 12На расстоянии r1=4см от бесконечно длинной заряженной нити находится точечный


заряд q=0,66 нКл. Под действием поля заряд приближается к нити

на расстояние
r2=2см, при этом совершается работа А=50эрг. Найти линейную плотность заряда на нити.

Условие задачи

Задача №5

На расстоянии r1=4см от бесконечно длинной заряженной нити находится точечный заряд q=0,66 нКл. Под действием поля заряд

Слайд 13Дано:
Решение:
– ?
q = 0,6610-9 Кл
r1 = 0,04

м
r2 = ,02 м
А = 510-6 Дж
 = 1
 =

3,14
0 = 8,8510-12 Ф/м

dU=-Edr

Подставим выражение (2) в (1), получаем

Напряженность поля, образованного
заряженной бесконечно длинной нитью

где а – расстояние до нити.

выражаем 

Ответ: линейная плотность заряда нити равна

r2

r1

x

Дано:Решение:  – ? q = 0,6610-9 Клr1 = 0,04 мr2 = ,02 мА = 510-6 Дж

Слайд 14Разность потенциалов между пластинами плоского конденсатора U=90В.
Площадь каждой пластины

S=60см2 и заряд q=1нКл. На каком расстоянии
друг от друга

находятся пластины?

Условие задачи

Задача №6

Разность потенциалов между пластинами плоского конденсатора U=90В. Площадь каждой пластины S=60см2 и заряд q=1нКл. На каком расстоянии

Слайд 15U = 90 В
S = 6010-4 м2
Q = 10-9 Кл

= 1
0 = 8,8510-12 Ф/м
Дано:
Решение:
d – ?
при =const.

(2)

Используем то, что напряженность поля, образованного разноименно заряженными
параллельными бесконечными плоскостями (поле плоского конденсатора)

Подставим (3) в (2), получаем

Так как формулы (1) и (4) являются двумя способами выражения одной и
той же величины, то можно приравнять их

Ответ: расстояние между пластинами конденсатора d=4,8 мм.

-q

+q


S

U

U = 90 ВS = 6010-4 м2Q = 10-9 Кл = 10 = 8,8510-12 Ф/м Дано:Решение:d –

Слайд 16В плоском горизонтально расположенном конденсаторе, расстояние между пластинами
которого d=1

см, находится заряженная капелька массой m=510-11 г. При отсутствии
электрического

поля капелька вследствие сопротивления воздуха падает с некоторой
постоянной скоростью. Если к пластинам конденсатора приложить разность
потенциалов U=600 В, то капелька падает вдвое медленнее. Найти заряд капельки.

Условие задачи

Задача №7

В плоском горизонтально расположенном конденсаторе, расстояние между пластинами которого d=1 см, находится заряженная капелька массой m=510-11 г.

Слайд 17d = 0,01 м
m = 510-14 кг
U = 600 В
1

= 22
g = 9,8 м/с
Дано:
Решение:
q – ?
Fсопр=mg. (1)


Fсопр=mg–Fэл (4)

Fэл=Eq.

Найдем проекции векторов сил на ось Оу:

Используя формулу Стокса, выразим Fсопр:

Подставив (2) в (1), получаем

Найдем проекции векторов сил на ось Оу:

Используя формулу Стокса, выразим Fсопр:

Подставим полученные формулы
в (4), получаем

Почленно разделив уравнения (3) и (5), получаем

выражаем заряд капли

Тогда

Ответ: заряд капельки q=4,110-18 Кл.

y

-qn

+qn

d

U

q

d = 0,01 мm = 510-14 кгU = 600 В1 = 22g = 9,8 м/с Дано:Решение:q –

Слайд 18Между двумя вертикальными пластинами на одинаковом расстоянии от них падает


пылинка. Вследствие сопротивления воздуха скорость падения пылинки постоянна
и равна

v=2 см/с. Через какое время после подачи на пластины разности потенциалов
U=3 кВ пылинка достигнет одной из пластин? Какое расстояние l по вертикали пылинка
пролетит до попадания на пластину? Расстояние между пластинами d=2 см, масса
пылинки m=210-9 г, ее заряд q=6,510-17 Кл.

Условие задачи

Задача №8

Между двумя вертикальными пластинами на одинаковом расстоянии от них падает пылинка. Вследствие сопротивления воздуха скорость падения пылинки

Слайд 19y
Дано:
t – ?
l – ?
Fсопр=mg. (1)
Решение:
Найдем проекции векторов

сил на ось Оу:
Используя формулу Стокса, выразим Fсопр:
Подставив (2) в

(1), получаем

Разделим почленно выражения (4) и (3), получаем

Подставляя (5) в (4) получаем

выразим t

L = v1t.

L=210-21 = 2(см).

Ответ: через 1 с после подачи на пластины разности потенциалов U=3000 В пылинка
достигнет одной из пластин. За это время она пролетит по вертикали 2 см.

d/2

d/2

+q

-q

l

x

y

yДано:t – ?l – ? Fсопр=mg. (1)	 Решение:Найдем проекции векторов сил на ось Оу:Используя формулу Стокса, выразим

Слайд 20Между двумя вертикальными пластинами, находящимися на расстоянии 1 см друг


от друга, на нити висит заряженный шарик массой 0,1 г.

После того, как на пластины
была подана разность потенциалов 1000 В, нить с шариком отклонилась на угол 10.
Найти заряд шарика.

Условие задачи

Задача №9

Между двумя вертикальными пластинами, находящимися на расстоянии 1 см друг от друга, на нити висит заряженный шарик

Слайд 21Дано:
Решение:
q – ?
Найдем проекции векторов на оси Ox и

Оу
Разделим почленно уравнение
(1) на (2), получаем
По определению
И, учитывая

то, что внутри конденсатора имеется
однородное электрическое поле с напряженностью

получим из (3)

Ответ: заряд шарика равен

+q

-q

y

a

x

Дано:Решение:q – ? Найдем проекции векторов на оси Ox и Оу Разделим почленно уравнение (1) на (2),

Слайд 22Электрон с некоторой начальной скоростью v0 влетает в плоский, горизонтально


расположенный конденсатор параллельно пластинам на равном расстоянии от них.
К

пластинам конденсатора приложена разность потенциалов U=300 В, расстояние
между пластинами d=2 см, длина конденсатора l=10 см. Какова должна быть
предельная начальная скорость электрона v0, чтобы электрон не вылетел из
конденсатора. Решить эту же задачу для альфа-частицы.

Условие задачи

Задача №10

Электрон с некоторой начальной скоростью v0 влетает в плоский, горизонтально расположенный конденсатор параллельно пластинам на равном расстоянии

Слайд 23Ответ: чтобы электрон и альфа-частица не вылетели из конденсатора, их

предельная
скорость должна быть
Дано:
Решение:
F=eE,
отклонится на расстояние
Чтобы электрон не

вылетел из конденсатора, надо, чтобы

отсюда

отсюда

и

соответственно.

пролетая длину l конденсатора
за время

-q

l

y

y

U

Ответ: чтобы электрон и альфа-частица не вылетели из конденсатора, их предельная скорость должна быть Дано:Решение:F=eE,отклонится на расстояние

Слайд 24Протон и альфа-частица с одинаковой скоростью влетают в плоский конденсатор


параллельно пластинам. Во сколько раз отклонение протона полем конденсатора
будет

больше отклонения альфа-частицы?

Условие задачи

Задача №11

Протон и альфа-частица с одинаковой скоростью влетают в плоский конденсатор параллельно пластинам. Во сколько раз отклонение протона

Слайд 25Дано:
вследствие того что
Решение:
d
l
y
-q
+q
y
U
F=eE,
ускорение по второму закону
Ньютона
пролетая

длину l конденсатора
за время
отклонится на расстояние
Найдем соотношение


Ответ: отклонение протона полем плоского конденсатора в два раза больше отклонения
альфа-частицы в этом же поле плоского конденсатора.

Дано: вследствие того что Решение:dly-q+qyU F=eE,ускорение по второму закону Ньютонапролетая длину l конденсатора за время отклонится на

Слайд 26Пучок электронов, ускоренных разностью потенциалов U=300В при прохождении через
незаряженный

плоский горизонтально расположенный конденсатор дает светящееся
пятно на флуоресцирующем экране,

расположенном на расстоянии l1=12 см от конца
конденсатора. При зарядке конденсатора пятно на экране смещается на
расстояние у=3 см. Расстояние между пластинами конденсатора d=1,4 см, длина
конденсатора l=6 см. Найти разность потенциалов U1, приложенную к пластинам
конденсатора.

Условие задачи

Задача №12

Пучок электронов, ускоренных разностью потенциалов U=300В при прохождении через незаряженный плоский горизонтально расположенный конденсатор дает светящееся пятно

Слайд 27Дано:
Решение:
U1 – ?
A=qU
Найдем v0. Если ускоряющее поле совершает

над частицей массой m и зарядом q работу
где Е –

напряженность поля между пластинами конденсатора, то

Подставим (3) и
(2) в (1), получаем

по оси Ox смещение: x=vxt2,
по оси Оу смещение: y=vy1t2,

Подставим в (5) выражение
(4), (*), (3), (2), получаем

Ответ: разность потенциалов, приложенная к пластинам конденсатора равна U=28 В.

+q

-q

d/2

+q

y1

Дано:Решение:U1 – ? A=qU Найдем v0. Если ускоряющее поле совершает над частицей массой m и зарядом q

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика