Разделы презентаций


Виды газовых разрядов

Существует два вида газовых разрядов: несамостоятельные и самостоятельные разряды. Плазма, возникшая при газовом разряде, называется газоразрядной. Состояние газоразрядной плазмы поддерживается за счет энергии, выделяемой проходящим (разрядным) током. Процесс исчезновения предоставленной самой

Слайды и текст этой презентации

Слайд 1Виды газовых разрядов
Поповой Катерины 10 в
Домашина Ивана 10 в

Виды газовых разрядовПоповой Катерины 10 вДомашина Ивана 10 в

Слайд 2Существует два вида газовых разрядов: несамостоятельные и самостоятельные разряды. Плазма,

возникшая при газовом разряде, называется газоразрядной. Состояние газоразрядной плазмы поддерживается

за счет энергии, выделяемой проходящим (разрядным) током.

Процесс исчезновения предоставленной самой себе плазмы (без электрического поля) называется деионизацией газа.

При несамостоятельных разрядах электропроводность газа поддерживается с помощью внешних источников - ионизаторов. Ионы и электроны приходят в направленное движение - возникает электрический ток. В случае самостоятельных разрядов ионизация газа производится самим разрядом.

1. Несамостоятельные разряды. Существует два основных средства с помощью которых производится ионизация газа при несамостоятельном разряде: высокая температура и различные излучения.

Именно из-за ионизации газа при нагревании (термоионизация) пламя горелки приобретает электропроводность.

Расщепление атома или молекулы газа на электрон и ион под действием излучения называется фотоионизацией. Только коротковолновое излучение способно вызвать ионизацию газа (это может быть собственное излучение разряда).

Существует два вида газовых разрядов: несамостоятельные и самостоятельные разряды. Плазма, возникшая при газовом разряде, называется газоразрядной. Состояние

Слайд 32. Самостоятельные разряды.
Искровой разряд. Присоединим шаровые электроды к батарее

конденсаторов и начнем заряжать конденсаторы при помощи электрической машины. По

мере заряжения конденсаторов будет увеличиваться разность потенциалов между электродами, а следовательно, будет увеличиваться напряженность поля в газе. Пока напряженность поля невелика, в газе нельзя заметить никаких изменений. Однако при достаточной напряженности поля (около 30000 в/см) между электродами появляется электрическая искра, имеющая вид ярко светящегося извилистого канала, соединяющего оба электрода. Газ вблизи искры нагревается до высокой температуры и внезапно расширяется, отчего возникают звуковые волны, и мы слышим характерный треск. Конденсаторы в этой установке добавлены для того, чтобы сделать искру более мощной и, следовательно, более эффектной.

Описанная форма газового разряда носит название искрового разряда, или искрового пробоя газа. При наступлении искрового разряда газ внезапно, скачком, утрачивает свои изолирующие свойства и становится хорошим проводником. Напряженность поля, при которой наступает искровой пробой газа, имеет различное значение у разных газов и зависит от их состояния (давления, температуры).

При заданном напряжении между электродами напряженность поля тем меньше, чем дальше электроды друг от друга. Поэтому, чем больше расстояние между электродами, тем большее напряжение между ними необходимо для наступления искрового пробоя газа. Это напряжение называется напряжением пробоя.

2. Самостоятельные разряды. Искровой разряд. Присоединим шаровые электроды к батарее конденсаторов и начнем заряжать конденсаторы при помощи

Слайд 4Электрическая дуга.
В 1802 г. В. В. Петров установил, что

если присоединить к полюсам большой электролитической батареи два кусочка древесного

угля и, приведя угли в соприкосновение, слегка их разделить, то между концами углей образуется яркое пламя, а сами концы углей раскаляются добела. Испуская ослепительный свет (электрическая дуга). Это явление семь лет спустя независимо наблюдал английский химик Дэви, который предложил в честь Вольта назвать эту дугу «вольтовой».

Для поддержания дугового разряда нужно небольшое напряжение: дуга хорошо горит при напряжении на ее электродах 40-45 в. Ток в дуге довольно значителен. Так, например, даже в небольшой дуге, идет ток около 5 А, а в больших дугах, употребляющихся в промышленности, ток достигает сотен ампер. Это показывает, что сопротивление дуги невелико; следовательно, и светящийся газовый столб хорошо проводит электрический ток.

Такая сильная ионизация газа возможна только благодаря тому, что катод дуги испускает очень много электронов, которые своими ударами ионизуют газ в разрядном пространстве. Сильная электронная эмиссия с катода обеспечивается тем, что катод дуги сам накален до очень высокой температуры (от 2200 до 3500C в зависимости от материала).

Электрическая дуга. В 1802 г. В. В. Петров установил, что если присоединить к полюсам большой электролитической батареи

Слайд 5Применение дугового разряда
Вследствие высокой температуры электроды дуги испускают ослепительный свет,

и поэтому электрическая дуга является одним из лучших источников света.

Она потребляет всего около 0,3 ватта на каждую свечу и является значительно более экономичной. Нежели наилучшие лампы накаливания. Электрическая дуга впервые была использована для освещения П. Н. Яблочковым в 1875 г. и получила название «русского света», или «северного света».
Электрическая дуга также применяется для сварки металлических деталей (дуговая электросварка). В настоящее время электрическую дугу очень широко применяют в промышленных электропечах. В мировой промышленности около 90% инструментальной стали и почти все специальные стали выплавляются в электрических печах.
Большой интерес представляет ртутная дуга, горящая в кварцевой трубке, так называемая кварцевая лампа. В этой лампе дуговой разряд происходит не в воздухе, а в атмосфере ртутного пара, для чего в лампу вводят небольшое количество ртути, а воздух выкачивают. Свет ртутной дуги чрезвычайно богат невидимыми ультрафиолетовыми лучами, обладающими сильным химическим и физиологическим действием. Ртутные лампы широко применяют при лечении разнообразных болезней («искусственное горное солнце»), а также при научных исследованиях как сильный источник ультрафиолетовых лучей.
Применение дугового разрядаВследствие высокой температуры электроды дуги испускают ослепительный свет, и поэтому электрическая дуга является одним из

Слайд 6Кроме искры, короны и дуги, существует еще одна форма самостоятельного

разряда в газах – так называемый тлеющий разряд. Для получения

этого типа разряда удобно использовать стеклянную трубку длинной около полуметра, содержащую два металлических электрода. Присоединим электроды к источнику постоянного тока с напряжение в несколько тысяч вольт (годится электрическая машина) и будем постепенно откачивать из трубки воздух. При атмосферном давлении газ внутри трубки остается темным, так как приложенное напряжение в несколько тысяч вольт недостаточно для того, чтобы пробить длинный газовый промежуток. Однако когда давление газа достаточно понизится, в трубке вспыхивает светящийся разряд. Он имеет вид тонкого шнура (в воздухе – малинового цвета, в других газах – других цветов), соединяющий оба электрода. В этом состоянии газовый столб хорошо проводит электричество.

Тлеющий разряд.

При дальнейшей откачен светящийся шнур размывается и расширяется, и свечение заполняет почти всю трубке. Различают следующие две части разряда: 1) несветящуюся часть, прилегающую к катоду, получившую название темного катодного пространства; 2) светящийся столб газа, заполняющий всю остальную часть трубки, вплоть до самого анода. Эта часть разряда носит название положительного столба.

Такой разряд используют в основном для освещения. Применяется в люминесцентных лампа.

Кроме искры, короны и дуги, существует еще одна форма самостоятельного разряда в газах – так называемый тлеющий

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика