Слайд 1 Числа Фибоначчи
Автор: Самотаева Ирина
Руководитель: Никифорова М. Н., учитель
математики.
ЮВАО школа №1968
г.Москва
2008-2009г.
Слайд 2 Цели проекта
Изучить последовательность чисел
Фибоначчи
Рассмотреть роль в природе и практическое применение
Проследить связь литературы с
математическими понятиями
Рассмотреть примеры применения «золотого сечения» в геометрических задачах, литературе, живописи.
Слайд 3 Леонардо Фибоначчи
Итальянский купец
Леонардо из Пизы ( 1180-1240), более известный под прозвищем Фибоначчи
был, безусловно, самым значительным математиком средневековья. Роль его книг в развитии математики и распространении в Европе математических знаний трудно переоценить. Жизнь и научная карьера Леонардо теснейшим образам связаны с развитием европейской культуры и науки.
Слайд 4Научные трактаты Фибоначчи
Это обширнейшая «Книга абака», написанная в
1202 году, но дошедшая до нас во втором своем варианте,
который относится к 1228 г.;
«Практика геометрии»(1220г.);
«Книга квадратов»( 1225г.).
По этим книгам, превосходящим по своему уровню арабские и средневековые европейские сочинения, учили математику чуть ли не до времен Декарта ( 17 в.).
Слайд 5 Книга «Абака»
Наибольший
интерес представляет сочинение "Книга абака". Эта книга представляет собой объемный
труд, содержащий почти все арифметические и алгебраические сведения того времени и сыгравший значительную роль в развитии математики в Западной Европе в течение нескольких следующих столетий. В частности, именно по этой книге европейцы познакомились с индусскими ("арабскими") цифрами.
Слайд 6 Числовая последовательность
Например, сумма двух соседних
чисел последовательности дает значение следующего за ними (например, 1+1=2; 2+3=5
и т.д.), что подтверждает существование так называемых коэффициентов Фибоначчи, т.е. постоянных соотношений.
Одно из самых главных следствий этих свойств различных членов последовательности определяются следующим образом:
1.Отношение каждого числа к последующему более и более стремится к 0.618 по увеличении порядкового номера. Отношение же каждого числа к предыдущему стремится к 1.618 (обратному к 0.618). Число 0.618 называют (ФИ), и мы поговорим о нем подробнее немного позже.
2.При делении каждого числа на следующее за ним через одно получаем число 0.382, наоборот - соответственно 2.618.
Слайд 73.Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: ...
4.235,2.618, 1.618,0.618,0,382,0.236. упомянем также 0.5 (1/2). Все они играют особую
роль в природе, и в частности — в техническом анализе.
Важно отметить, что Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи.
Слайд 8 Золотой коэффициент
Золотой
коэффициент используется природой для построения ее частей, начиная от больших
и заканчивая малыми. Современная наука считает, что Вселенная развивается по так называемой золотой спирали (рис.3), которая строится именно с помощью золотого коэффициента. Эта спираль в буквальном смысле не имеет конца и начала. Меньшие витки никогда не сходятся в одну и ту же точку, а большие неограниченно развиваются в пространстве.
Слайд 9 Золотая спираль
Самое
важное заключается в том, что с помощью всех этих, в
каком-то роде мистических, чисел, описываются разнородные процессы во Вселенной.
х
у
Слайд 10 Применение чисел
Один из
простейших способов применения чисел Фибоначчи на практике - об определении
отрезков времени, через которые произойдет то или иное событие, например, изменение тренда. Аналитик отсчитывает определенное количество фибоначчиевских дней или недель (13, 21,34, 55 и т.д.) от предыдущего сходного события.
Числа Фибоначчи имеют широкое применение при определении длительности периода в Теории Циклов. За основу каждого доминантного цикла берется определенное количество дней, недель, месяцев, связанное с числами Фибоначчи. Например, длина Цикла (Волны) Кондратьева равна 54 годам. Отметим близость этой величины к фибоначчиевскому числу 55. Один из способов применения чисел Фибоначчи — построение дуг (рис.4).
Слайд 11Золотое сечение в геометрических
задачах
Золотое сечение часто встречается в различных задачах. Рассмотрим
одну из них.
Задача. Вписать в полукруг квадрат так, чтобы одна его сторона лежала на диаметре.
Для решения задачи, очевидно, достаточно найти точку С . Оказывается, она осуществляет золотое сечение диаметра АВ. Покажем это. Обозначим АС = х, СD = a. Тогда = , откуда , т.е. приходим к известному нам уравнению, определяющему золотое сечение.
А
В
С
D
Слайд 12Связь стихосложения с законами математики
Законы стихосложения неразрывно связаны с
математическими законами. Так, например, можно установить закономерную связь между многими
стихотворениями А.С.Пушкина и числами Фибоначчи, с Золотым сечением. Стихотворный текст настолько совершенен, что в нём обязательно действуют математические законы. Примером могут служить такие стихотворения Пушкина, как «Сапожник», «Не дорого ценю я громкие слова...», «Вакхическая песня», роман «Евгений Онегин». Рассмотрим роман «Евгений Онегин» и проведем анализ, в котором прослеживаются математические законы.
Слайд 13Роман Пушкина «Евгений Онегин»
Начнем с величины
стихотворения, то есть с количества строк в нем. Казалось бы,
этот параметр стихотворения может меняться произвольно. Однако оказалось, что это не так. Например, проведенный Н. Васютинским анализ стихотворений А. С. Пушкина с этой точки зрения показал, что размеры стихов распределены весьма неравномерно; оказалось, что Пушкин явно предпочитает размеры в 5, 8, 13, 21 и 34 строк (числа Фибоначчи). Представляет несомненный интерес анализ романа «Евгений Онегин», сделанный Н. Васютинским. Этот роман состоит из 8 глав, в каждой из них в среднем около 50 стихов. Наиболее отточенной и эмоционально насыщенной является восьмая глава. В ней 51 стих. Вместе с письмом Евгения Онегина к Татьяне (60 строк) это точно соответствует числу Фибоначчи 55! Ритм онегинской строфы несет глубокую смысловую нагрузку. Четыре формообразующих элемента строфы - это, как правило, и четыре содержательных элемента: тема развитие кульминация афористическая концовка. Онегинская строфа была настолько оригинальным и индивидуальным изобретением Пушкина, что после Пушкина почти никто из поэтов не рисковал прикасаться к его детищу.
Кульминацией главы является объяснение Евгения в любви к Татьяне -строка «Бледнеть и гаснуть ... вот блаженство!» Эта строка делит восьмую главу на две части - в первой 477 строк, а во второй - 295 строк. Их отношение равно 1, 617! Тончайшее соответствие величине золотой пропорции!
«Пиковая дама»
Обратимся
вновь к произведениям А.С.Пушкина. Рассмотрим композицию "Пиковой дамы". В этой повести кульминационным моментом является сцена в спальне графини, куда проник Германн в надежде узнать тайну трех карт, сцена, которая оканчивается смертью графини в повести 853 строки. Кульминационный момент повести - это смерть графини. Ему отвечает 535 -я строка. Эта строка расположена в повести почти точно в месте золотого сечения, т.к. 853:535=1,6 . Повесть "Пиковая дама" состоит из шести глав. Посмотрим, не проявляется ли в композиции глав золотая пропорция? В первой главе золотому сечению отвечает 68 строчка (всего в главе 110 строк). Но ведь это же узловая точка повествования, в ней переломный момент всей главы: откроет ли Сен - Жермен свою тайну графине! Вторая глава повести содержит 219 строк. Золотое сечение здесь приходится на 135 строку. Но ведь это кульминационный момент главы, Лиза увидела в окне стоящего на улице Германна! Отсюда начался для нее новый отсчет времени, начались события, определившие всю ее дальнейшую судьбу. А.С.Пушкин совершенно точно определил это место во второй главе: ведь 219:135 = 1,62. Третья глава повести описывает усилия Германна попасть в дом старой графини, выведать у нее тайну трех карт. Это место начинает новый отсчет времени для Германна. Эта ситуация приходится на 131 строку третьей главы, а всего в ней 212 строк. Разделив 212 на 131, мы получим точно золотую пропорцию 1,618! В четвертой главе размером 113 строк золотая пропорция приходится на 70 строку. Это также переломный, трагический момент в жизни Лизы. В пятой главе описано посещение Германна похорон графини. 46 строка пятой главы разделила повествование на две части: первая - похороны графини и вторая - сон Германна. Эта 46 строка также отвечает золотой пропорции, ведь всего в этой главе 75 строк (75:46=1,63). В последней главе повести золотая пропорция приходится на 77 строчку, которая завершает описание первого дня игры Германна в карты и первого его выигрыша. Как видим, и в композиции последней главы повести присутствует золотая пропорция. Золотая пропорция присутствует и в композиции других произведений Пушкина. В рассказе "Станционный смотритель" 377 строк. Кульминационный момент рассказа - это известие о том, что дочь смотрителя уехала с гусаром. Этот момент отражен во фразе, которая является 214 строкой. Здесь почти точное соответствие золотой пропорции. В маленьком рассказе "Гробовщик" всего 229 строк. Со 139 строки начинается описание страшного сна гробовщика. И здесь переломный момент рассказа приходится почти точно на золотую пропорцию (229:1,618=141 строка). Совпадение кульминационных моментов в произведениях А.С.Пушкина с золотой пропорцией удивительно близкое, в пределах 1-3 строк.
Слайд 15На этой знаменитой картине И. И. Шишкина с очевидностью просматриваются
мотивы золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом
плане) делит длину картины по золотому сечению. Справа от сосны - освещенный солнцем пригорок. Он делит по золотому сечению правую часть картины по горизонтали. Слева от главной сосны находится множество сосен - при желании можно с успехом продолжить деление картины по золотому сечению и дальше. Наличие в картине ярких вертикалей и горизонталей, делящих ее в отношении золотого сечения, придает ей характер уравновешенности и спокойствия, в соответствии с замыслом художника. Когда же замысел художника иной, если, скажем, он создает картину с бурно развивающимся действием, подобная геометрическая схема композиции (с преобладанием вертикалей и горизонталей) становится неприемлемой.
Золотое сечение в картине И. И. Шишкина
"Сосновая роща"
Слайд 16Золотое сечение в картине Леонардо да Винчи "Джоконда"
Портрет
Моны Лизы привлекает тем, что композиция рисунка построена на"золотых треугольниках"
(точнее на треугольниках, являющихся кусками правильного звездчатого пятиугольника).
Слайд 17 Заключение
В результате проделанной
мною работы была изучена последовательность и свойства чисел Фибоначчи, которая
заключается в том, что сумма двух соседних чисел последовательности дает значение следующего за ними.
Я узнала что такое «золотое сечение», его связь с литературой, живописью, астрономией.
Я расширила свои знания по математике.
Я научилась анализировать и выбирать материал из Интернета.
Слайд 18Я думаю, что данная работа заинтересует не только учеников, интересующихся
математикой, но и будет интересна учащимся, которые любят литературу, другие
области знаний, а так же учителям.
В этой работе показана связь математики с литературой на основе анализа одного произведения, но такой анализ можно сделать и для других стихотворений.
Показана связь математики с живописью.
Слайд 19Список литературы
1.http://www.trader-lib.ru/books/507/14.htmW58
2.http://samara.teletrade.ru/glossary/tech/index3.php
3.http://www.stock.narod.ru/fibo.htm
Гринбаум О.Н. Онегинская строфа.
Висютинский Н.А. « Золотая пропорция». –
М. : Молодая гвардия, 1990 г.
Н. Я. Виленкин, Л. П.
Шибасов, З. Ф. Шибасова «За страницами учебника математики»