Аксиома параллельности и следствия из неё.
а
А
Следствие 2. Если две прямые параллельны третьей прямой, то они параллельны.
a II с, b II с → a II b
c
b
Если при пересечении двух прямых секущей сумма односторонних углов равна 1800, то прямые параллельны.
1
2
а
b
c
c
а
b
1
2
c
а
b
1
2
Если при пересечении двух прямых
секущей накрест лежащие углы равны,
то прямые параллельны.
Признаки параллельности прямых
Отложим от луча МN угол NМР, равный углу 2.
По построению накрест лежащие углы NМР= 2
РМ II b.
Получили, что через точку М проходит две прямые (а и МР), параллельные прямой b !!! Это противоречит аксиоме параллельных прямых. Значит наше допущение неверно!!!
1= 2. Теорема доказана.
1
2
Р
b
а
c
3
Дано: а II b, c- секущая.
Доказать: OУ 1+ 2=1800.
Доказательство:
3+ 2 =1800, т. к. они смежные.
1= 3, т. к. это НЛУ при а II b
3 + 2 =1800
1
Теорема доказана.
Если
то
условие
заключение теоремы
b
а
c
3
Дано: а II b, c- секущая.
Доказать: СУ 1 = 2.
Доказательство:
2 = 3, т. к. они вертикальные.
3 = 1, т. к. это НЛУ при а II b
1 = 3 = 2
Теорема доказана.
Если
то
условие
заключение теоремы
1
2
а
b
c
c
а
b
1
2
c
а
b
1
2
Если две параллельные прямые пере-
сечены секущей, то накрест лежащие
углы равны.
Свойства параллельных прямых
Найти:
х
х + 58
а
b
с
1
2
Дано: а || b, с – секущая,
Найти:
х
3х
Найти:
2х
7х
Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть