Разделы презентаций


Биологическое окисление

Содержание

*СодержаниеБиоэнергетика: История развитияБиологическое окислениеЦТК (Цикл Кребса)

Слайды и текст этой презентации

Слайд 1*
Биологическое окисление 1
Лектор д.м.н., проф. Грицук А. И.
зав. кафедрой биохимии

Гомельского государственного медицинского университета
ЛФ

* Биологическое окисление 1Лектор д.м.н., проф. Грицук А. И. зав. кафедрой биохимии Гомельского государственного медицинского университетаЛФ

Слайд 2*
Содержание
Биоэнергетика: История развития
Биологическое окисление
ЦТК (Цикл Кребса)

*СодержаниеБиоэнергетика: История развитияБиологическое окислениеЦТК (Цикл Кребса)

Слайд 3*
Биоэнергетика
Термин введен лауреатом Нобелевской премии Альбертом Сент-Дьерди
Биоэнергетика - раздел

биохимии изучающей механизмы и пути превращения энергии в живых системах

*БиоэнергетикаТермин введен лауреатом Нобелевской премии Альбертом Сент-Дьерди Биоэнергетика - раздел биохимии изучающей механизмы и пути превращения энергии

Слайд 4*
История учения о БО
Античные авторы: Учение о 4 стихиях обсуждали

роль воздуха в БО Платон (воздух необходим для поддержания внутреннего

огня) «Могущественные боги, предоставив нам, немощным пищу, разделили тело наше каналами, чтобы оно могло орошаться как бы из некого идущего сверху потока… Получив орошение и освежение, оно имеет возможность питаться и жить. Ибо когда воздух входит внутрь и выходит вон, то и соединенный с ним внутренний огонь охватывает пищу и питье, расплавляя их, разлагает на мелкие частицы и затем приносит к жилам» Платон
Аристотель (воздух для охлаждения внутренностей и крови)
XVII в. Georg Ernst Stahl создал теорию флогистона.
1770 годы . Carl Scheele и Joseph Priestley открыли бесфлогистонный воздух, который впоследствии А. Лавуазье назвал кислородом
*История учения о БОАнтичные авторы: Учение о 4 стихиях обсуждали роль воздуха в БО Платон (воздух необходим

Слайд 5*
Antoine Lavoisier
В конце XVIII в. A. Лавуазье ввел в

химические исследования количественный метод и создал кислородную теорию горения
A.

Лавуазье установил сходство горения и дыхания на основании количественного анализа конечных продуктов
*Antoine Lavoisier В конце XVIII в. A. Лавуазье ввел в химические исследования количественный метод и создал кислородную

Слайд 6*

Теория активации кислорода
В 1840 Ф. Шёнбайн открыл озон, более активную

форму О2

В конце XIX в. – почти одновременно A.Н.

Бах (Россия) и К. Энглер (Германия) создали теорию активации кислорода :

Гипотетическая форма озона

*Теория активации кислородаВ 1840 Ф. Шёнбайн открыл озон, более активную форму О2 В конце XIX в. –

Слайд 7*
Критическая оценка теории Баха-Энглера
Не была найдена высокая активность оксигеназ в

живых организмах.
Не была найдена высокая концентрация H2O2 в живых организмах.
Были

обнаружены ферменты деградации H2O2 в живых организмах (каталаза и пероксидаза).
*Критическая оценка теории  Баха-ЭнглераНе была найдена высокая активность оксигеназ в живых организмах.Не была найдена высокая концентрация

Слайд 8*
Теория Палладина-Виланда
1903 – Н. Бор, создал теорию строения атома (ядро,

электроны).
Возникло иное представление об О-В процессах (бескислородное окисление)
1912 –В.И.

Палладин и Г. Виланд создали теорию «активации водорода», предполагающую наличие 2-х стадий:
Анаэробная стадия: SH2 + R = S + RH2 (см рис.)
Аэробная стадия : RH2 + 1/2 O2 ? R + H2O.




*Теория Палладина-Виланда1903 – Н. Бор, создал теорию строения атома (ядро, электроны).Возникло иное представление об О-В процессах (бескислородное

Слайд 9*
Хромогены и гистогематины
Переносчики электронов были названы хромогенами из-за окраски зависящей

от О-В состояния
В качестве хромогенов позднее идентифицированы коферменты FMN, FAD,

NAD+, NADP+.
1925 –открыты гистогематины (цитохромы)
1932 – акад В.А. Энгельгардт открыл сопряженное окислительное фосфорилирование (ADP + Pi ? ATP).
*Хромогены и гистогематиныПереносчики электронов были названы хромогенами из-за окраски зависящей от О-В состоянияВ качестве хромогенов позднее идентифицированы

Слайд 10*
Реакции переноса электронов от донора к акцептору.
Редокс потенциал создает напряжение

в цепи.
Редокс потенциал пары H+:H2 принят за 0.
Редокс-реакции, редокс потенциал

*Реакции переноса электронов от донора к акцептору.Редокс потенциал создает напряжение в цепи.Редокс потенциал пары H+:H2 принят за

Слайд 11*
ATP
ATP – основной макроэрг всех живых клеток.
Содержит 2 макроэргические связи.

*ATPATP – основной макроэрг всех живых клеток.Содержит 2 макроэргические связи.

Слайд 12*
Maкроэргичность ATФ
Отрицательно заряженный «хвост» создает сильное отталкивание
ATФ4- ? ADФ3- +

Фн2- + H+
[ATФ4-] = [ADФ3-] = [] = [H+] =

10-3 M
Если [H+] будет 10-3 M, pH=3. Но pH=7, значит [H+] =10-7, и хим равновесие сильно сдвинуто влево
ADФ3- и Фн2- резонансные гибриды, для которых характерна высокая устойчивость
В результате
G(ATФ4-) >> G(ADФ3-) + G(Фн2-) + G(H+)
*Maкроэргичность ATФОтрицательно заряженный «хвост» создает сильное отталкиваниеATФ4- ? ADФ3- + Фн2- + H+[ATФ4-] = [ADФ3-] = []

Слайд 13*
Mg2+ стабилизирует структуру АТФ

*Mg2+ стабилизирует структуру АТФ …

Слайд 14*
ATФ-AДФ цикл

*ATФ-AДФ цикл

Слайд 16*
Образование субстратов БО

Стадия I:
Б, Ж, У расщепляются на относительно

небольшое кол-во мономеров
Стадия II:
Полученные строительные блоки превращаются в

унифицированные метаболиты (ПВК, ацетил КоА и др.).
Стадия III:
Катаболиз унифицированныех метаболитов до СО2 и Н2О с выделением полезной конвертируемой энергии
*Образование субстратов БОСтадия I: Б, Ж, У расщепляются на относительно небольшое кол-во мономеровСтадия II: Полученные строительные блоки

Слайд 17*
Stages 1 and 2

*Stages 1 and 2

Слайд 18*
Stage 3

*Stage 3

Слайд 19*
Ферменты и коферменты БО
Оксидоредуктазы
оксидазы
ДГ
Пиризин-зависимые (NAD+, NADH+)
Флавин-зависимые (FMN, FAD)
Гидропероксидазы
Окигеназы

*Ферменты и коферменты БООксидоредуктазыоксидазыДГПиризин-зависимые (NAD+, NADH+)Флавин-зависимые (FMN, FAD)ГидропероксидазыОкигеназы

Слайд 20*
NAD(P)+

*NAD(P)+

Слайд 21*
FAD, FMN

*FAD, FMN

Слайд 22*
FMN consists of the structure above the dashed line on

the FAD (oxidized form).
The flavin nucleotides accept two hydrogen

atoms (two electrons and two protons), both of which appear in the flavin ring system.
When FAD or FMN accepts only one hydrogen atom, the semiquinone, a stable free radical, forms.

Структура FAD и FMN

*FMN consists of the structure above the dashed line on the FAD (oxidized form). The flavin nucleotides

Слайд 23*
Мх: локализация
Mх: цилиндр ∅ 0.5 - 1.0 μm.
Мх подвижная пластичная

органелла, способна сливаться и делиться, образовывать Мх ретикулум.

*Мх: локализацияMх: цилиндр ∅ 0.5 - 1.0 μm.Мх подвижная пластичная органелла, способна сливаться и делиться, образовывать Мх

Слайд 24*
Общий план строения Мх
В печени 67% всего белка Мх находится

в матриксе 21% во внутр мембране по 6% в наружной

мембране и межмембранном пространстве
*Общий план строения МхВ печени 67% всего белка Мх находится в матриксе 21% во внутр мембране по

Слайд 25*
Progress in Studying Mitochondria
Real progress in understanding mitochondrial function, depended

on procedures developed in 1948 for isolating intact mitochondria.
Many

of these biochemical studies have been performed with mitochondria purified from liver;
each liver cell contains 1000-2000 mitochondria, which in total occupy about one-fifth of the cell volume.
*Progress in Studying MitochondriaReal progress in understanding mitochondrial function, depended on procedures developed in 1948 for isolating

Слайд 26*
Internal structure of a mitochondrion
The principal membranes and compartments.
The

cristae form sheets and tubes.
The intermembrane space appears continuous

with the lumen of each crista.
The F0F1 complexes (small red spheres), which synthesize ATP, are intramembrane particles.
The matrix contains the mitochondrial DNA (blue strand), ribosomes (small blue spheres), and granules (large yellow spheres).
*Internal structure  of a mitochondrionThe principal membranes and compartments. The cristae form sheets and tubes. The

Слайд 27*
The Comparative Characteristics of Mitochondrial Membranes
Outer membrane
Monoaminoxidase
Fatty acid elongase
Choline phosphotransferase
Phospholipase

A
Matrix
TCA enzymes
Fatty acid β-oxidation enzymes
Pyruvate carboxylase
Gltamate dehydrogenase
Inner membrane
NADH dehydrogenase
Succinate dehydrogenase
Cytochromes

b, c1, c, a, a3
Carnitine acyl transferase
ADP-ATP translocase
Phosphate translocase
Glutamate-aspartate translocase
Glutamate-OH--translocase
Pyruvate translocase
Malate-citrate translocase
Malate-α-ketoglutarate translocase
*The Comparative Characteristics  of Mitochondrial MembranesOuter membraneMonoaminoxidaseFatty acid elongaseCholine phosphotransferasePhospholipase AMatrixTCA enzymesFatty acid β-oxidation enzymesPyruvate carboxylaseGltamate

Слайд 28*
Membrane Composition: Lipid fractions
Inner membrane contains proteins 70 % and

lipids 30 %.
Specific phospholipid is cardiolipin.
Low cholesterol and sphingolipids content.

*Membrane Composition:  Lipid fractionsInner membrane contains proteins 70 % and lipids 30 %.Specific phospholipid is cardiolipin.Low

Слайд 29*
Tricarboxylic Acid Cycle
A time-lapse photograph of a ferris wheel at

night. Aerobic cells use a metabolic wheel—the tricarboxylic acid cycle—to

generate energy by acetyl-CoA oxidation.
(Ferns Wheel, DelMar Fair © Corbis/Richard Cummins)
*Tricarboxylic Acid CycleA time-lapse photograph of a ferris wheel at night. Aerobic cells use a metabolic wheel—the

Слайд 30*
Krebs’ Cycle
Hans Adolf Krebs, 1937.

TCA is the common pathway for

the final oxidation on all metabolic fuels.

The TCA reactions occurs

in mitochondrial matrix.
*Krebs’ CycleHans Adolf Krebs, 1937.TCA is the common pathway for the final oxidation on all metabolic fuels.The

Слайд 31*
Role of TCA
Energetic.
1 TCA turn = 12 ATP.
Plastic.
α-KG

? glu.
OA ? asp.
Succinyl-CoA ? heme.
Regulatory.
Urea cycle (formation

of urea in liver) depends on TCA.
*Role of TCAEnergetic. 1 TCA turn = 12 ATP.Plastic. α-KG ? glu. OA ? asp. Succinyl-CoA ?

Слайд 32*
Plastic Role of TCA

*Plastic Role of TCA

Слайд 33*
Regulatory Role of TCA: “Krebs’ bicycle”
TCA
Urea Cycle
aspartate
fumarate
OA
NH3, CO2
Urea
Acetyl-KoA

*Regulatory Role of TCA: “Krebs’ bicycle”TCAUrea CycleaspartatefumarateOANH3, CO2UreaAcetyl-KoA

Слайд 34*
At the level of entry of substrates into the cycle,
Fuel

enters the TCA cycle primarily as acetyl-CoA. The generation of

acetyl-CoA from carbohydrates is, a major control point of the cycle.

Regulation of the TCA Cycle


*At the level of entry of substrates into the cycle,Fuel enters the TCA cycle primarily as acetyl-CoA.

Слайд 35*
Regulation of the TCA Cycle (cont’d)
At the key reactions of

the cycle.
3 reactions of the TCA cycle utilize NAD+

as cofactor ? the cellular ratio of NAD+/NADH has a major impact on the flux of carbon through the TCA cycle.
Substrate availability. Citrate synthase reaction depends on availability of oxaloacetate.
Product inhibition also controls the TCA flux, e.g. citrate inhibits citrate synthase, α-KGDH is inhibited by NADH and succinyl-CoA.
The key enzymes of the TCA cycle are also regulated allosterically by Ca2+, ATP and ADP.
*Regulation of the TCA Cycle (cont’d)At the key reactions of the cycle. 3 reactions of the TCA

Слайд 36*
Inhibitors of Krebs Cycle

*Inhibitors of Krebs Cycle

Слайд 372 Tissue respiration. Oxidative phosphorylation. Microsomal oxidation and peroxidation
Alexander KOVAL PhD,

senior lecturer

2 Tissue respiration.  Oxidative phosphorylation.  Microsomal oxidation and peroxidationAlexander KOVAL  PhD, senior lecturer

Слайд 38*
Content
The Ways of Oxygen Consumption in the Organism
Structure & Functions

of Respiratory Chain
Oxidative Phosphorylation
Microsomal Oxidation. Peroxydase Pathway. Monooxygenase Systems. Dioxygenase

System
Free Radicals, Peroxidation and Antioxidants
*ContentThe Ways of Oxygen Consumption in the OrganismStructure & Functions of Respiratory ChainOxidative PhosphorylationMicrosomal Oxidation. Peroxydase Pathway.

Слайд 39*
Introduction

*Introduction

Слайд 40*
The Ways of Oxygen Consumption in the Organism
O2
Mitochondrial respiration

Microsomal oxidation

Peroxidation
90-95%


5-10%
2-5%
up to 40% in liver

*The Ways of Oxygen Consumption in the OrganismO2Mitochondrial respirationMicrosomal oxidationPeroxidation90-95% 5-10% 2-5% up to 40% in liver

Слайд 41*
Biologic Oxidation (BO)
Oxidation is the removal of electrons and reduction

– the gain of electrons.
Biologic oxidation can take place

without molecular oxygen.
Respiration is the process by which cells gain energy in the form of ATP from the controlled reaction of hydrogen with oxygen to form water.
Tissue respiration.
*Biologic Oxidation (BO)Oxidation is the removal of electrons and reduction – the gain of electrons. Biologic oxidation

Слайд 42*
Biomedical Importance of BO
O2 is incorporated into a variety of

substrates by enzymes designated as oxygenases;
many drugs, pollutants, and

chemical carcinogens (xenobiotics) are metabolized by enzymes of this class, known as the cytochrome P450 system.
Administration of oxygen can be lifesaving in the treatment of patients with respiratory or circulatory failure.
*Biomedical Importance of BOO2 is incorporated into a variety of substrates by enzymes designated as oxygenases; many

Слайд 43*
Energy Conversion: Mitochondria
After the cytosolic stage of biologic oxidation, energy

derived from the partial oxidation of energy-rich carbohydrate molecules is

used to form ATP.
Energy generation occurs more efficiently on membranes.
In the aerobic respiration that enables us to use oxygen to produce large amounts of ATP from food molecules.
*Energy Conversion: MitochondriaAfter the cytosolic stage of biologic oxidation, energy derived from the partial oxidation of energy-rich

Слайд 44*
Chemiosmotic Coupling
The common pathway used by mitochondria, chloroplasts, and prokaryotes

to harness energy for biological purposes operates by a process

known as chemiosmotic coupling – reflecting a link between the chemical bond-forming reactions that generate ATP ("chemi") and membrane-transport processes ("osmotic").
The coupling process occurs in two linked stages, both of which are performed by protein complexes embedded in a membrane.




sunlight

foodstuff

High Energy Electrons

Transmembrane electrochemical proton gradient

Active membrane transport

ATP synthesis

Bacterial flagellar rotation

*Chemiosmotic CouplingThe common pathway used by mitochondria, chloroplasts, and prokaryotes to harness energy for biological purposes operates

Слайд 45*
Electron Transporting Chain, ETC (1/2)
The mitochondria contain the series of

catalysts known as the respiratory chain (electron transporting chain, ETC)

that collect and transport reducing equivalents and direct them to their final reaction with oxygen to form water.
ETC components are imbedded to the inner membrane of mitochondria.
*Electron Transporting Chain, ETC (1/2)The mitochondria contain the series of catalysts known as the respiratory chain (electron

Слайд 46*
Electron Transporting Chain (ETC) (2/2)

*Electron Transporting Chain (ETC) (2/2)

Слайд 47*
ETC functions
It is the final common pathway in aerobic cells.
NAD+

and FAD are reduced to NADH + H+ and FADH2

respectively in most oxidation reactions. By ETC these coenzymes are reoxidized to NAD+ and FAD.
*ETC functionsIt is the final common pathway in aerobic cells.NAD+ and FAD are reduced to NADH +

Слайд 48*
ETC Complexes: Overview

*ETC Complexes: Overview

Слайд 49*
Complex I (NADH-CoQ reductase)

Contains:
FMN
FeS centres (22-24 iron-sulfur (Fe-S) proteins in

5-7 clusters).
Electron acceptor is CoQ

*Complex I (NADH-CoQ reductase)Contains:FMNFeS centres (22-24 iron-sulfur (Fe-S) proteins in 5-7 clusters). Electron acceptor is CoQ

Слайд 50*
Coenzyme Q (CoQ) or Ubiquinone
CoQ is a component of the

inner mitochondrial membrane involved in the process of electron transport.


It draws electrons into the respiratory chain, not only from NADH but also from succinate.
*Coenzyme Q (CoQ) or UbiquinoneCoQ is a component of the inner mitochondrial membrane involved in the process

Слайд 51*
CoQ10
CoQ is oxidized by cytochromes, it is a collection point

of electrons from several flavoprotein dehydrogenases.

*CoQ10CoQ is oxidized by cytochromes, it is a collection point of electrons from several flavoprotein dehydrogenases.

Слайд 52*
Complex II (Succinate-CoQ reductase)
Complex II contains FAD and 7-8 Fe-S

proteins in 3 clusters and cytochrome b560.
Complex II is perhaps

better known by its other name—succinate dehydrogenase, the only TCA cycle enzyme that is an integral membrane protein in the inner mitochondrial membrane. This enzyme has a mass of approximately 100 to 140 kD
*Complex II  (Succinate-CoQ reductase)Complex II contains FAD and 7-8 Fe-S proteins in 3 clusters and cytochrome

Слайд 53*
Complex II and III
CoQ accepts electrons from both complex I

And complex II and donates electrons to complex III.

*Complex II and IIICoQ accepts electrons from both complex I And complex II and donates electrons to

Слайд 54*
Q-cycle (1/2)
The electron transfer pathway following oxidation of the first

UQH2 at the Qp site near the cytosolic face of

the membrane.
*Q-cycle (1/2)The electron transfer pathway following oxidation of the first UQH2 at the Qp site near the

Слайд 55*
Q-cycle (2/2)
The pathway following oxidation of a second UQH2.

*Q-cycle (2/2)The pathway following oxidation of a second UQH2.

Слайд 56*
Complex IV: Cytochrome c Oxidase
Complex IV is called cytochrome c

oxidase because it accepts electrons from cytochrome c and directs

them to the four-electron reduction of O2 to form H2O.
*Complex IV: Cytochrome c OxidaseComplex IV is called cytochrome c oxidase because it accepts electrons from cytochrome

Слайд 57*
H+-ATPase
Ion gradient across a membrane is a form of stored

energy, which can do useful work when the ions are

flowing back across the membrane.
H+ flows back down its electrochemical gradient through ATP synthase, which catalyzes the synthesis of ATP from ADP and inorganic phosphate (Pi).
This ubiquitous enzyme plays the role of a turbine, permitting the proton gradient to drive the production of ATP.
*H+-ATPaseIon gradient across a membrane is a form of stored energy, which can do useful work when

Слайд 58*
ATP/ADP translocase
Outward transport of ATP (via the ATP/ADP translocase) is

favored by the membrane electrochemical potential.

*ATP/ADP translocaseOutward transport of ATP (via the ATP/ADP translocase) is favored by the membrane electrochemical potential.

Слайд 59*
Respiratory Chain Functioning

*Respiratory Chain Functioning

Слайд 60*
Functional scheme of ETC
There are 3 cycles in ETC functioning:

F-cycle, Q-cycle and O-cycle.
Proton pumping result in electrochemical gradient

ΔμH+ formation.
Finally it is used for ATP formation.

4H+

4H+

2H+

4H+

2H+

2H+

NADH + H+

NAD+

FADH2

FAD

TCA

Q-cycle

O-cycle

4H+ + O2

H2O

ADP + Pi

ATP

H+

ATP synthase

QH2

F-cycle

*Functional scheme of ETCThere are 3 cycles in ETC functioning: F-cycle, Q-cycle and O-cycle. Proton pumping result

Слайд 61*
Inhibitors of Oxidative Phosphorylation

*Inhibitors of Oxidative Phosphorylation

Слайд 62*
The Structures of Several Inhibitors of ETC and OP

*The Structures of Several Inhibitors of ETC and OP

Слайд 63*
The Sites of Action of Several Inhibitors of ETC and/or

*The Sites of Action of Several Inhibitors of ETC and/or OP

Слайд 64*
Several Uncouplers of OP

*Several Uncouplers of OP

Слайд 65*
Uncoupler Action
2,4-Dinitrophenol (2,4-DNP) can uptake proton from the intermembrane space

and transports it back to the mitochondrial matrix.

*Uncoupler Action2,4-Dinitrophenol (2,4-DNP) can uptake proton from the intermembrane space and transports it back to the mitochondrial

Слайд 66*
2,4-DNP decreases ΔμH+

Intermembrane space
Mitochondrial matrix
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
25:1 H+

*2,4-DNP decreases ΔμH+Intermembrane spaceMitochondrial matrixH+H+H+H+H+H+H+H+H+H+H+H+H+H+H+H+H+H+H+H+H+H+H+H+H+H+25:1 H+

Слайд 67*
Endogenous Uncouplers Enable Organisms To Generate Heat
Certain cold-adapted animals, hibernating

animals, and newborn animals generate large amounts of heat by

uncoupling oxidative phosphorylation.
Adipose tissue in these organisms contains so many mitochondria that it is called brown adipose tissue for the color imparted by the mitochondria.
The inner membrane of brown adipose tissue mitochondria contains an endogenous protein called thermogenin (literally, “heat maker”), or uncoupling protein, that creates a passive proton channel through which protons flow from the cytosol to the matrix.
*Endogenous Uncouplers Enable Organisms To Generate HeatCertain cold-adapted animals, hibernating animals, and newborn animals generate large amounts

Слайд 68*
P/O Ratio
Electrons that enter the chain from NADH supports the

synthesis of ≈3 moles of ATP.
Electrons that enter the chain

from FADH2 supports the synthesis of ≈2 moles of ATP.
The P/O ratio refers to the number of inorganic phosphate molecules utilized for ATP generation for every atom of oxygen consumed.
NADH P/O = 3
FADH2 P/O = 2
Ascorbate P/O = 1
*P/O RatioElectrons that enter the chain from NADH supports the synthesis of ≈3 moles of ATP.Electrons that

Слайд 69*
Disorders of Mitochondrial Oxidative Phosphorylation
Mitochondria contain DNA (mtDNA).
Some components of

ETC are coded in mtDNA. Others – in nuclear DNA.
Several

disorders of OP are the result of mtDNA damage.

*Disorders of Mitochondrial Oxidative PhosphorylationMitochondria contain DNA (mtDNA).Some components of ETC are coded in mtDNA. Others –

Слайд 70*
Clinical Manifestation and Treatment of Mito Disorders
Manifestation
Muscle cramping and weakness,
Fatigue,
Lactic

acidosis,
CNS dysfunction,
Vision problems.
Treatment
Is difficult and often unsuccesfull
In some cases

can be helpful ubiquinone, vitamin C, menadione.
*Clinical Manifestation and Treatment of Mito DisordersManifestationMuscle cramping and weakness,Fatigue,Lactic acidosis,CNS dysfunction,Vision problems.Treatment Is difficult and often

Слайд 71*
Some Mitochondrial Diseases
The names of mitochondrial diseases are often complex

and usually are described by abbreviations.
LHON, Lebers hereditary optical

neuropathy;
MERRF, myoclonic epilepsy and ragged-red-fiber disease;
MELAS, mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes;
NARP, neurological muscle weakness,ataxia, and retinitis pigmentosa;
Leigh disease — SNE, subacute necrotizing encephalomyelopathy;
KSS, Kearns–Sayre syndrome;
CPEO, chronic progressive external ophthalmoplegia.
*Some Mitochondrial DiseasesThe names of mitochondrial diseases are often complex and usually are described by abbreviations. LHON,

Слайд 72*
LHON
LHON is a hereditary disease that often leads to sudden

blindness from death of the optic nerve especially among males.


Any one of several point mutations in
subunits ND1, 2, 4, 5, and 6 of NADH dehydrogenase (complex I),
cytochrome b of complex II, or
subunit I of cytochrome oxidase
may cause this syndrome.
Most frequent is an R340H mutation of the ND4 gene at position 11,778 of mtDNA. It may interfere with reduction of ubiquinone.
Mutations in the ND1 gene at position 3460 and in the ND6 gene at position 14484 or in the cytochrome b gene at position 15257 cause the same disease.
*LHONLHON is a hereditary disease that often leads to sudden blindness from death of the optic nerve

Слайд 73*
MERRF, MELAS et al.
The most frequent (80 – 90%) cause

of MERRF, which is characterized by epilepsy and by the

appearance of ragged red fibers in stained sections of muscle, is an A → G substitution at position 8344 of mtDNA in the TψC loop of mitochondrial tRNALys.
A similar disease, MELAS, is accompanied by strokes (not seen in MERRF) and is caused in 80% of cases by an A → G substitution in the dihydrouridine loop of mitochondrial tRNALeu.
CPEO, Leigh disease, and KSS often result from large deletions of mtDNA.
NARP and related conditions have been associated with an L156R substitution in the ATPase 6 gene of ATP synthase.
*MERRF, MELAS et al.The most frequent (80 – 90%) cause of MERRF, which is characterized by epilepsy

Слайд 74*
Can Mitochondrial Diseases be Treated?
Attempts are being made to

improve the function of impaired mitochondria by adding large amounts

of ubiquinone, vitamin K, thiamin, riboflavin, and succinate to the diet.
One report suggests that mitochondrial decay during aging can be reversed by administration of N-acetylcarnitine.

*Can Mitochondrial Diseases be Treated? Attempts are being made to improve the function of impaired mitochondria by

Слайд 75*
Cytochromes P450 are monooxygenases important for the detoxification of many

drugs & for the hydroxylation of steroids
Cytochromes P450 - superfamily

of heme-containing monooxgenases,
> 1000 such enzymes are known.

Both NADH and NADPH donate reducing equivalents for the reduction of these cytochromes, which in turn are oxidized by substrates in a series of enzymatic reactions collectively known as the hydroxylase cycle.

*Cytochromes P450 are monooxygenases important for the detoxification of many drugs & for the hydroxylation of steroidsCytochromes

Слайд 76*
Cytochrome b5
In liver microsomes, cytochromes P450 are found together with

cytochrome b5 and have an important role in detoxification.
Benzpyrene,

aminopyrine, aniline, morphine, and benzphetamine are hydroxylated, increasing their solubility and aiding their excretion.
Many drugs such as phenobarbital have the ability to induce the formation of microsomal enzymes and of cytochromes P450.
*Cytochrome b5In liver microsomes, cytochromes P450 are found together with cytochrome b5 and have an important role

Слайд 77*
Monooxygenase System (Microsomal Oxidation)
The substrate can be oxidized by incorporation

of one atom of O2.
The enzymes are monooxygenases or

cytochrome P450 - also mixed function oxidase.
The enzymes are associated with the smooth endoplasmic reticulum, preparated as microsomes.
RH + O2 + NADPH + H+ ? R-OH + H2O + NADP+

*Monooxygenase System (Microsomal Oxidation)The substrate can be oxidized by incorporation of one atom of O2. The enzymes

Слайд 78*

Functioning of Microsomal Respiratory Chain
Cyt P450
RH
R-OH
O2
H2O
Cyt b5
FMN
NADP + H+
NADP +

H+
NADP+
e-
e-

*Functioning of Microsomal Respiratory ChainCyt P450RHR-OHO2H2OCyt b5FMNNADP + H+NADP + H+NADP+ e-e-

Слайд 79*
Microsomal Oxidation and Cytochrome P450

*Microsomal Oxidation and Cytochrome P450

Слайд 83*
Conclusion

*Conclusion

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика