Разделы презентаций


ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №15 Выполнила: с тудентка гр. 0215-ЭК(о) Кондратьева

Содержание

Сущность и содержание ситуационного и процессного подходов к управлению; Модели на базе частотных характеристик; Методы исследования систем на устойчивость.Вопросы экзаменационного билета №152/35

Слайды и текст этой презентации

Слайд 1ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №15
Выполнила:
студентка гр. 0215-ЭК(о)
Кондратьева Наталья
Филиал государственного бюджетного образовательного учреждения

высшего образования Московской области “Университет Дубна” – Дмитровский институт непрерывного

образования

Дисциплина: Моделирование процессов и систем.

35 слайдов

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №15Выполнила:студентка гр. 0215-ЭК(о)Кондратьева НатальяФилиал государственного бюджетного образовательного учреждения высшего образования Московской области “Университет Дубна” –

Слайд 2Сущность и содержание ситуационного и процессного подходов к управлению;


Модели на базе частотных характеристик;
Методы исследования

систем на устойчивость.

Вопросы экзаменационного билета №15

2/35

Сущность и содержание ситуационного и процессного подходов к управлению;    Модели на базе частотных характеристик;

Слайд 3Экзаменационный вопрос №1
Сущность и содержание ситуационного и процессного подходов

к управлению.
3/35

Экзаменационный вопрос №1 Сущность и содержание ситуационного и процессного подходов к управлению.3/35

Слайд 4Ситуационный подход гласит, что различные методы управления должны применяться в

зависимости от конкретной ситуации, так как организация — это открытая

система, постоянно взаимодействующая с окружающим миром (внешней средой), поэтому главные причины того, что происходит внутри организации (во внутренней среде), следует искать в ситуации, в которой эта организация вынуждена действовать.

Центральный момент подхода - ситуация - конкретный набор обстоятельств, которые оказывают влияние на деятельность организации в текущий момент времени. Ситуационный подход связан с системным подходом и пытается увязать конкретные управленческие приемы и концепции с конкретными ситуациями.

Ситуационный подход

4/35

Ситуационный подход гласит, что различные методы управления должны применяться в зависимости от конкретной ситуации, так как организация

Слайд 5Этот подход нацелен на непосредственное применение новых научных методов в

конкретных ситуациях и условиях.

Здесь важно «ситуационное мышление» — понимание того,

какие приемы будут более эффективными для достижения целей в данной ситуации. Главная сложность в том, что ситуационные процессы многочисленны и взаимосвязаны и их нельзя рассматривать независимо друг от друга, поэтому руководителю бывает довольно сложно определить заведомо верный метод.
Ситуационный подход призван связать конкретные приемы и концепции управления с определенными конкретными ситуациями, изучить ситуационные различия между организациями и внутри самих организаций.

5/35

Этот подход нацелен на непосредственное применение новых научных методов в конкретных ситуациях и условиях.Здесь важно «ситуационное мышление»

Слайд 66/35
Теория ситуационного подхода опирается на четыре основных положения:
руководитель должен быть

знаком с эффективными средствами профессионального управления. Для этого нужно понимать

процесс управления, особенности индивидуального и группового поведения, владеть навыками системного анализа, знать методы планирования и контроля, количественные методы принятия решений;
руководитель должен предвидеть вероятные последствия от применения в данной ситуации каждого из управленческих методов, которые всегда имеют как сильные, так и слабые стороны, а также определенные сравнительные характеристики. Например, можно увеличить заработную плату всем работникам за дополнительную работу, что, несомненно, на какое-то время повысит их мотивацию, но надо сравнить рост затрат с полученными выгодами; возможно, такая мера окажется разорительной для организации;
руководитель должен уметь правильно интерпретировать ситуацию, выявлять факторы, наиболее важные в сложившейся ситуации, определять возможный эффект от изменения тех или иных переменных показателей ситуации;
руководитель должен уметь увязывать конкретные приемы, которые дали минимальный негативный эффект, с конкретными ситуациями для обеспечения наибольшей эффективности в достижении целей организации.
6/35Теория ситуационного подхода опирается на четыре основных положения:руководитель должен быть знаком с эффективными средствами профессионального управления. Для

Слайд 7Иллюстрация методологии ситуационного подхода к управлению
Рисунок 1
7/35

Иллюстрация методологии ситуационного подхода к управлениюРисунок 17/35

Слайд 8Процессный (процессуальный) подход
Согласно процессному подходу, управление — это серия взаимосвязанных

и универсальных управленческих процессов (планирование, организация, мотивация, контроль и связующие

процессы — процесс коммуникации и процесс принятия решения). Эти процессы менеджмент называет управленческими функциями, а процесс управления — это сумма перечисленных управленческих функций .
«Отец» процессного подхода — Анри Файоль — утверждал, что «управлять означает предсказывать и планировать, организовывать, распоряжаться, координировать и контролировать».

Рисунок 2

8/35

Процессный (процессуальный) подходСогласно процессному подходу, управление — это серия взаимосвязанных и универсальных управленческих процессов (планирование, организация, мотивация,

Слайд 9Экзаменационный вопрос №2
Модели на базе частотных характеристик.
9/35

Экзаменационный вопрос №2Модели на базе частотных характеристик.9/35

Слайд 10Термин "модель" широко используется в различных сферах человеческой деятельности и

имеет множество смысловых значений. Мы под "моделью" будем понимать такой

материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.
Любая модель строится и исследуется при определенных допущениях, гипотезах.
Модель — результат отображения одной структуры на другую. Отобразив физическую систему (объект) на математическую систему (например, математический аппарат уравнений), получим физико-математическую модель системы, или математическую модель физической системы.

Понятие о модели

10/35

Термин

Слайд 11Модели частотных характеристик
Из частотных характеристик выделяют 3 основные: 1) амплитудно-частотную

характеристику;
2) фазо-частотную характеристику; 3) амплитудно-фазовую характеристику.
11/35

Модели частотных характеристик Из частотных характеристик выделяют 3 основные: 1) амплитудно-частотную характеристику; 2) фазо-частотную характеристику;  3)

Слайд 12Амплитудно-фазовая характеристика (АФХ) – зависимость изменения фазы от частоты.

Разделяем вещественную

и мнимую части:

Освобождаемся от i в знаменателе:
12/35

Амплитудно-фазовая характеристика (АФХ) – зависимость изменения фазы от частоты.Разделяем вещественную и мнимую части:Освобождаемся от i в знаменателе:12/35

Слайд 13Составляем таблицу 1 по данным

13/35
Таблица 1

Составляем таблицу 1 по данным13/35Таблица 1

Слайд 14Амплитудно – фазовая характеристика элемента
АФХ элемента находится в первой четверти

координатной оси и приходит к 0.
Из этого графика видно, что

амплитуда выходных колебаний, начинаясь с некоторого значения А(ω)=1, плавно убывает и при ∞→∞ А(∞)=0.

График 1

14/35

Амплитудно – фазовая характеристика элементаАФХ элемента находится в первой четверти координатной оси и приходит к 0.Из этого

Слайд 15Амплитудно-частотная характеристика (АЧХ) – функция, показывающая зависимость модуля передаточной функции

системы от частоты.

- амплитуда выходных колебаний.

15/35

Амплитудно-частотная характеристика (АЧХ) – функция, показывающая зависимость модуля передаточной функции системы от частоты.- амплитуда выходных колебаний.15/35

Слайд 16Составляем таблицу 2
Таблица 2
16/35

Составляем таблицу 2Таблица 216/35

Слайд 17Амплитудно – частотная характеристика элемента
При изменении частоты (w) от 0

до ∞ амплитуда выходных колебаний изменяется от значения К=1 до

0.

17/35

График 2

Амплитудно – частотная характеристика элементаПри изменении частоты (w) от 0 до ∞ амплитуда выходных колебаний изменяется от

Слайд 18Фазо-частотная характеристика (ФЧХ) устанавливает зависимость сдвига фаз между входным и

выходным сигналами.
- фаза выходных колебаний.
18/35

Фазо-частотная характеристика (ФЧХ) устанавливает зависимость сдвига фаз между входным и выходным сигналами.- фаза выходных колебаний.18/35

Слайд 19Составляем таблицу 3
19/35
Таблица 3

Составляем таблицу 319/35Таблица 3

Слайд 20Фазо – частотная характеристика элемента
ФЧХ изменяется от 0 при ∞

= 0, а при ∞ → ∞ - стремится к

– π/2.

20/35

График 3

Фазо – частотная характеристика элементаФЧХ изменяется от 0 при ∞ = 0, а при ∞ → ∞

Слайд 21Экзаменационный вопрос №3
Методы исследования систем на устойчивость.
21/35

Экзаменационный вопрос №3Методы исследования систем на устойчивость.21/35

Слайд 22Понятие устойчивости систем
Устойчивость — это свойство системы возвращаться в исходный

или близкий к нему установившийся режим после всякого выхода из

него в результате какого-либо воздействия.

На рисунке показаны типичные кривые переходных процессов в неустойчивой (рис. а) и устойчивой (рис. б) системах. Если система неустойчива, то достаточно любого толчка, чтобы в ней начался расходящийся процесс ухода из исходного установившегося состояния. Этот процесс может быть апериоди­ческим (кривая 1 на рис. 3, а) или колебательным (кривая 2 на рис. 3, а).

22/35

Рисунок 3

Понятие устойчивости системУстойчивость — это свойство системы возвращаться в исходный или близкий к нему установившийся режим после

Слайд 23Рассмотрим, от чего зависит устойчивость системы, чем она определяется. Обратимся

для этого к дифференциальному уравнению переходного процесса:
 
y(t)D(p)=x(t)M(p),
 
где x(t) –

входное воздействие, y(t) –функция переходного процесса.

Решение этого линейного неоднородного уравнения в общем виде состоит из двух составляющих:
y(t)=yуст(t)+yп(t).
 
Здесь yуст(t)—частное решение неоднородного уравнения с правой частью, описывающее вынужденный режим системы, устанавливающийся по окончании переходного процесса; такие ре­жимы были рассмотрены ранее; yп(t) — общее решение однород­ного уравнения
y(t)D(p)=0,
описывающее переходный процесс в системе, вызванный данным возмущением.
Как показано выше, система будет устойчива, если переходные процессы yп(t), вызванные любыми возмущениями, будут затухаю­щими, т. е. если с течением времени yп(t) будет стремиться к нулю.

23/35

Рассмотрим, от чего зависит устойчивость системы, чем она определяется. Обратимся для этого к дифференциальному уравнению переходного процесса: y(t)D(p)=x(t)M(p), 

Слайд 24Решение yп(t) однородного дифференциального уравнения, как известно, имеет вид:
yп(t)=
Здесь Ci—

постоянные интегрирования, определяющиеся началь­ными условиями и возмущением;i— корни характеристического уравнения
D()=0,

где многочлен D() есть левая часть уравнения динамики системы после замены оператора дифференцирования р на ком­плексную переменную .
В общем случае корни i являются комплексными. При этом они образуют пары сопряженных корней:
i,i+1 = i  ji , где i может быть положительной или отрицательной величиной. Каждая такая пара корней дает в выражении составляю­щую переходного процесса, равную

где Сi’ и i определяются через Сi и Сi+1.
Как видим, эта составляющая представляет собой синусоиду с амплитудой, изменяющейся во времени по экспоненте.
Когда i=0, имеем действительный корень i=i. Соответствующая ему составляющая переходного про­цесса представляет собой экспоненту, которая будет затухать или увеличиваться тоже в зависимости от знака i.

24/35

Решение yп(t) однородного дифференциального уравнения, как известно, имеет вид:yп(t)=Здесь Ci— постоянные интегрирования, определяющиеся началь­ными условиями и возмущением;i—

Слайд 25Итак, в общем случае переходный процесс в системе состоит из

колебательных и апериодических составляющих. Общим условием затухания всех состав­ляющих, а

значит, и всего переходного процесса в целом является отрица­тельность действительных частей всех корней характеристического уравнения системы, т. е. всех полюсов (нулей зна­менателя) передаточной функции си­стемы.


Если хотя бы один корень имеет положительную действительную часть, он даст расходящуюся составляющую переходного процесса и система будет неустойчивой. Наличие пары сопряжен­ных чисто мнимых корней i,i+1 = ji , даст незатухающую гармоническую составляющую переходного процесса. При этом в системе установятся незатухающие колебания с частотой, равной i. Этот случай является граничным между устойчивостью и неустойчивостью — система при этом находится на границе устойчивости.

Если изобразить корни характеристического уравнения системы точками на комплексной плоскости, то найденное выше общее условие устойчивости линейной системы можно сформули­ровать еще так: условием устойчивости системы является располо­жение всех корней характеристического уравнения, т. е. полюсов передаточной функции системы, в левой комплексной полуплоско­сти или, короче, все они должны быть левыми.
Наличие корня на мнимой оси означает, что система находится на границе устойчивости.

25/35

Рисунок 4

Итак, в общем случае переходный процесс в системе состоит из колебательных и апериодических составляющих. Общим условием затухания

Слайд 26Существуют три основных критерия устойчивости:

критерий Рауса-Гурвица;
критерий Михайлова;
критерий Найквиста.



Рассмотрим их последовательно.
Критерии устойчивости
26/35

Существуют три основных критерия устойчивости: критерий Рауса-Гурвица; критерий Михайлова;критерий Найквиста. Рассмотрим их последовательно.Критерии устойчивости26/35

Слайд 27КРИТЕРИЙ УСТОЙЧИВОСТИ РАУСА — ГУРВИЦА
Это алгебраический критерий, по которому условия

устойчи­вости сводятся к выполнению ряда неравенств, связывающих коэффициенты уравнения системы.

В разной форме этот критерий был предложен английским математиком Эдвардом Раусом и затем швей­царским математиком Адольфом Гурвицем в конце прошлого века. При­ведем без доказательства этот критерий в форме Гурвица.

где полагаем а0 > 0, что всегда можно обеспечить умножением многочлена на —1. Составим из коэффициентов этого многочлена определитель

Возьмем многочлен

Этот определитель называется определителем Гурвица. Он имеет п строк и п столбцов. Первая строка содержит все нечетные коэффициенты до последнего, после чего строка заполняется до положенного числа п элементов нулями. Вторая строка включает все четные коэффициенты и тоже заканчивается нулями. Третья строка получается из первой, а четвертая — из второй сдвигом, вправо на один элемент.

На освободившееся при этом слева место ставится нуль. Аналогично сдвигом вправо на элемент получаются все последующие нечетные и четные строки из предыдущих одноименных строк.

27/35

КРИТЕРИЙ УСТОЙЧИВОСТИ РАУСА — ГУРВИЦАЭто алгебраический критерий, по которому условия устойчи­вости сводятся к выполнению ряда неравенств, связывающих

Слайд 28В результате в главной диагонали определителя оказываются последовательно все коэффициенты,

кроме a0
Условие устойчивости заключается в требовании положительности определителя Гурвица и

всех его диагональных миноров. Эти миноры отчерчены в выражении пунктирными линиями.
Развернем критерий Гурвица для нескольких конкретных зна­чений п.
 
Для п=1

и условия устойчивости сводятся к неравенствам:

a0>0, a1>0

Отсюда, например, звено первого порядка с передаточной функцией

является устойчивым, а звено с передаточной функцией

- неустойчивым.

Для n=2

Условия устойчивости:
a0>0, a1>0, a2>0 (к последнему неравенству сводится неравенство 2>0, если учесть предыдущее неравенство а1 > 0).

Например, звено с передаточной функцией

устойчиво, если перед всеми членами

в знаменателе стоит знак плюс.

28/35

В результате в главной диагонали определителя оказываются последовательно все коэффициенты, кроме a0Условие устойчивости заключается в требовании положительности

Слайд 29Можно показать в общем случае системы n-го порядка, что в

условия устойчивости в качестве их части входит требова­ние положительности всех

коэффициентов уравнения. Анализ устойчивости надо начинать с проверки этого простого, необходимого, но недостаточного условия устой­чивости. При его невыполнении, естественно, отпадает надобность в составлении и проверке остальных неравенств.
Условия устойчивости, получаемые из критерия Рауса — Гур­вица, как видно из изложенного, усложняются с ростом порядка системы. При этом для систем достаточно высокого порядка оказы­вается затруднительным выяснять влияние на устойчивость си­стемы значений отдельных параметров звеньев, входящих в состав коэффициентов уравнения. Это связано с тем, что, как правило, одни и те же параметры одновременно входят в несколько коэф­фициентов уравнения системы. Поэтому критерий Рауса — Гур­вица применяют только для систем невысокого порядка и прежде всего для анализа устойчивости, когда надо определить, устойчива ли система при известных значениях всех ее параметров. При ре­шении задачи синтеза системы, когда требуется выбрать значения отдельных параметров системы, критерий Рауса — Гурвица ста­новится неудобным уже для систем выше четвертого порядка.

29/35

Можно показать в общем случае системы n-го порядка, что в условия устойчивости в качестве их части входит

Слайд 30КРИТЕРИЙ УСТОЙЧИВОСТИ МИХАЙЛОВА
Это графический критерий. Он предложен в 1938 г.

советским ученым А. В. Михайловым и тоже основан на рассмотрении

мно­гочлена D ().
Подставим в этот многочлен вместо  мнимую переменную j. В результате получим комплексную функцию:

D(j)=UD()+jVD().

Изобразим D(j) в виде годографа в комплексной плоскости (кривая 1 на рис.5, а). Этот годограф называется годографом Михайлова. При =0 функция D(j)=an, т. е. годограф начинается на действительной оси.

Критерий Михайлова формулируется так: система устойчива, если годограф D(j), начинаясь на действительной положитель­ной полуоси, огибает против часовой стрелки начало координат, проходя последовательно n квадрантов, где n — порядок системы.
На рис. 5, а годограф 1 относится к устойчивой, а годографы 3; 4 и 5 — к неустойчивым системам.

Условием нахождения системы на границе устойчивости яв­ляется прохождение годографа Михайлова через начало коорди­нат (кривая 2 на рис. 5, а). Действительно, в этом случае суще­ствует значение , при котором D(j)=0, т. е. характеристиче­ское уравнение системы имеет пару сопряженных мнимых корней = j. Последнее и означает наличие в системе незатухающих колебаний, т. е. нахождение ее на границе устойчивости. На рис. б приведены годографы устойчивых систем разных порядков до п=6.

30/35

Рисунок 5

КРИТЕРИЙ УСТОЙЧИВОСТИ МИХАЙЛОВАЭто графический критерий. Он предложен в 1938 г. советским ученым А. В. Михайловым и тоже

Слайд 31Этот критерий, предложенный в 1932 г. американским ученым Г. Найквистом,

позволяет судить об устойчивости замкнутой си­стемы по амплитудно-фазовой частотной характеристике

(а. ф. ч. х.) W(j) разомкнутой системы рис. 6.
Сформулируем этот критерий только для случая, когда изве­стно, что система в разомкнутом состоянии устойчива. Условие устойчивости замкнутой системы тогда сводится к требованию, чтобы а. ф. ч. х. разомкнутой системы не охватывала точку (-1, j0).

КРИТЕРИЙ УСТОЙЧИВОСТИ НАЙКВИСТА


На рис. 6 характеристики 1 и 4 соответствуют устойчивым системам, характеристика 3 — неустойчивой, а характеристика 2-нахождению системы на границе устойчивости.

31/35

Рисунок 6

Этот критерий, предложенный в 1932 г. американским ученым Г. Найквистом, позволяет судить об устойчивости замкнутой си­стемы по

Слайд 32В соответствии с критерием Найквиста об устойчивости можно судить не

только по а. ф. ч. х., но и совместно по

а. ч. х. и ф. ч. х. разомкнутой системы. Обычно при этом пользуются логарифмиче­скими характеристиками, что представляет большое удобство в силу простоты их построения.
Согласно критерию Найквиста, для системы, устойчивой в ра­зомкнутом состоянии, условием устойчивости ее в замкнутом со­стоянии является не охват а. ф. ч. х. W (j) точки (-1, j0). По­следнее имеет место, если при частоте, на которой А()=1, фаза ()>-, т. е. абсолютное значение фазы меньше .
Сказанное непосредственно следует из рис.6. Таким образом, применительно к логарифмическим характери­стикам, если учесть при этом, что значению А=1 соответствует L=20lgA=0, критерий устойчивости Найквиста для систем, устойчивых в разомкнутом состоянии, сводится к тому, что л. а. х. должна пересечь ось абсцисс раньше, чем фаза окончательно пе­рейдет за значение —. Или иными словами: на частоте среза ср величина фазы должна быть мень­ше .

32/35

В соответствии с критерием Найквиста об устойчивости можно судить не только по а. ф. ч. х., но

Слайд 33Изложенное иллюстрируется рис.7. Здесь изображены л. а. х. L() и

четыре варианта л. ф. х. (). В случае л. ф.

х. 1 и 4 замкнутая система устойчива, причем характеристика 4 соответ­ствует а. ф. ч. х. 4 на рис.6. Л. ф. х. 2 соответствует нахожде­нию замкнутой системы на грани­це устойчивости, а л. ф. х. 3—не­устойчивой замкнутой системе.

33/35

Рисунок 7

Изложенное иллюстрируется рис.7. Здесь изображены л. а. х. L() и четыре варианта л. ф. х. (). В

Слайд 34В случае, применения критерия Рауса - Гурвица о запасе устойчивости

можно судить по тому запасу, с которым выпол­няются входящие в

этот критерий неравенства. При использова­нии графических критериев Михайлова и Найквиста запас устойчи­вости определяется удаленностью соответствующих характеристик от критического положения, при котором система находится па границе устойчивости. Для критерия Михайлова это будет уда­ление годографа D(j) от начала координат, а для критерия Найквиста — удаление характеристики W(j) от точки (-1, j0).
Основное распространение в качестве меры запаса устойчиво­сти получили вытекающие из критерия Найквиста две величины - запас устойчивости по фазе  и запас устойчивости по амплитуде L. Эти величины показаны на рис.7 для системы с л. ф. х., представленной кривой 2. Аналогично они могут быть найдены и по а. ф. ч. х.
Запас устойчивости по фазе определяется ве­личиной , на которую должно возрасти запаздывание по фазе в системе на частоте среза, чтобы система оказалась на границс устойчивости.
Запас устойчивости по амплитуде опреде­ляется величиной L допустимого подъема л. а. х., при котором система окажется на границе устойчивости.

34/35

В случае, применения критерия Рауса - Гурвица о запасе устойчивости можно судить по тому запасу, с которым

Слайд 3535/35
Спасибо за внимание!

35/35Спасибо за внимание!

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика