Слайд 1Финансовый университет
при Правительстве Российской Федерации
Дистанционное обучение
Слайд 2Финансовый университет
при Правительстве Российской Федерации
Шевелёв
Александр Юрьевич
доцент, кандидат физико-
математических наук.
Слайд 3Финансовый университет
при Правительстве Российской Федерации
Математика
Слайд 4Финансовый университет
при Правительстве Российской Федерации
Тема №12.
Элементы теории вероятностей
Слайд 5 Случайное явление можно иногда характеризовать относительной частотой (или
частостью) – отношением числа наступлений явления к общему числу испытаний.
Теория вероятностей есть раздел математики, в котором изучаются только случайные явления с устойчивой относительной частотой и выявляются закономерности при массовом их повторении.
Слайд 6Классификация событий
Любое явление, которое может произойти, называется
событием.
Событие рассматривается как результат испытания. (Обозначается большими латинскими
буквами).
Слайд 7Классификация событий
События бывают несовместными (несовместимыми), если наступление
одного из них исключает возможность наступления другого. В противном случае
события называются совместными (совместимыми).
Слайд 8Классификация событий
Событие называется достоверным, если оно не
может не произойти в условиях данного опыта или явления.
Событие называется невозможным, если оно не может произойти при выполнении определённого комплекса условий.
Слайд 9Классификация событий
Два события, одно из которых обязательно
должно произойти, причём наступление одного исключает возможность наступления другого, называются
противоположными.
В некотором испытании события А, В, С и т.д. называются единственно возможными, если, по крайней мере, одно из них произойдёт, как исход испытания.
Слайд 10Классификация событий
События А, В, С,…,М образуют полную
систему (группу), если они являются единственно возможными и несовместимыми исходами
некоторого испытания.
Слайд 11Классификация событий
Суммой конечного числа событий называется новое
событие, состоящее в наступлении хотя бы одного из них (А+В).
Произведением конечного числа событий называется новое событие, состоящее в том, что произойдут все эти события (А В).
Слайд 12Классификация событий
События А и В называются эквивалентными, если
наступление события А влечёт за собой наступление события В, а
также наступление В влечёт за собой наступление А.
Слайд 13Классификация событий
Р(А) – Вероятность события А равна
отношению числа случаев, благоприятствующих событию А к общему числу возможных
элементарных исходов испытания, полагая, что исходы образуют полную систему и равновозможны. (Классическое определение вероятности).
Слайд 14Классификация событий
На практике не все условия классического
определения вероятности можно выполнить, поэтому наряду с ним пользуются статистическим
определением вероятности, принимая за вероятность события относительную частоту события.
Слайд 15Классификация событий
Недостатки классического определения (конечное число возможных
исходов испытания) можно преодолеть, используя геометрическое определение вероятности.
Геометрической
вероятностью события А называется отношение меры области, благоприятствующей появлению события А, к мере всей области.
Слайд 16Задача
Пример. Бросают одновременно два кубика. Какова вероятность в
сумме получить 5 очков?
Решение: Число благоприятствующих случаев четыре (1+4, 4+1,
2+3, 3+2); общее число исходов тридцать шесть.
Слайд 17Элементы комбинаторики
Правило суммы. Если элемент может быть
выбран способами, элемент -
другими способами, и т.д. элемент
- способами, отличными от всех предыдущих, то выбор одного из элементов может быть осуществлён способами.
Слайд 18Элементы комбинаторики
2. Правило произведения. Если элемент может
быть выбран способами, После каждого такого выбора
элемент может быть выбран способами и т.д., после каждого выбора элемент может быть выбран способами, то выбор всех элементов в указанном порядке может быть осуществлён способами.
Слайд 19Задача
Пример. В пачке билетов мгновенной лотереи содержится 3
билета с относительно крупным выигрышем и 15 билетов с символическим
выигрышем. Сколькими способами можно выбрать один из выигрышных билетов?
Решение. 3+15=18 способов.
Слайд 20Задача
Пример. В спортивной команде 22 человека. Необходимо выбрать
капитана и его заместителя. Сколькими способами это можно сделать?
Решение. способа.
Слайд 21Элементы комбинаторики
3. Факториалом натурального числа называется произведение всех натуральных чисел
от единицы до него включительно.
Слайд 22Элементы комбинаторики
4. Размещениями из n элементов некоторого множества по m
называются подмножества, состоящие из m элементов, которые отличаются либо составом
элементов, либо порядком их расположения, либо и тем, и другим.
Слайд 23Задача
Пример. Школьное расписание на один день состоит из
4-х уроков по разным дисциплинам. Найти число вариантов расписания при
выборе из 9-и дисциплин.
Решение.
вариантов.
Слайд 24Элементы комбинаторики
5. Если комбинации, состоящие из n элементов, отличаются только
порядком расположения этих элементов, то их называют перестановками из n
элементов.
Слайд 25Задача
Пример. Порядок выступления пяти конкурсантов определяется жребием. Сколько
существует различных вариантов жеребьёвки?
Решение.
вариантов.
Слайд 26Элементы комбинаторики
6. Если комбинации из n элементов по m отличаются
только составом элементов (порядок их следования неважен), то такие подмножества
называют сочетаниями.
Слайд 27Задача
Пример. Сколькими способами можно выбрать 3 розы из
8-и, стоящих на витрине?
Решение.
Слайд 28Основные теоремы
(Сложения вероятностей). Вероятность суммы конечного числа несовместимых событий равна
сумме вероятностей этих событий.
Сумма вероятностей событий, образующих полную систему равна
1.
Вероятность события, противоположного событию А
Слайд 29Классификация событий
Два события называют независимыми, если проявление
одного из них не меняет вероятность проявления другого.
Если вероятность проявления другого меняется, то события называют зависимыми.
Слайд 30 Вероятность события А, найденная в предположении, что событие
В наступило, называется условной вероятностью события А относительно события В.
Слайд 31Основные теоремы
4. Вероятность совместного проявления двух независимых событий равна
произведению вероятностей этих событий. (Теорема верна для любого конечного числа
независимых в совокупности событий).
Слайд 32Задача
Пример. В трёх вазах по 10 конфет. В
первой – 3 шоколадных, во второй – 4, в третьей
– 1. Ребёнок берёт по одной конфете из каждой вазы. Какова вероятность того, что все 3 конфеты не окажутся шоколадными.
Решение.
Слайд 33Основные теоремы
5. (Умножения вероятностей зависимых событий). Вероятность совместного проявления двух
зависимых событий равна произведению вероятности одного из них на условную
вероятность другого, вычисленную в предположении, что первое событие уже наступило.
Слайд 34Основные теоремы
6. Вероятность совместного проявления нескольких зависимых событий равна произведению
вероятности одного из них на условные вероятности всех остальных, причём
вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже проявились.
Слайд 35Основные теоремы
7. Вероятность проявления хотя бы одного из двух совместных
событий равна сумме вероятностей этих событий без вероятности их совместного
события.
Слайд 36Задача
Пример. Два стрелка поражают цель с вероятностями 0,8
и 0,6. С какой вероятностью будет поражена цель при одновременном
залпе из обоих орудий?
Решение.
Слайд 37Основные теоремы
8. (Формула полной вероятности). Вероятность события А, которое может
наступить лишь при условии проявления одного из несовместных событий
образующих полную систему, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А.
Слайд 38Задача
Пример. В трёх вазах по 10 конфет. В
первой – 3 шоколадных, во второй – 4, в третьей
– 1. Вероятность того, что ребёнок подойдёт к первой вазе равна 0,2, ко второй – 0,3. Какова вероятность того, что взятая наудачу ребёнком конфета окажется шоколадной?
Решение.
Слайд 39Повторные независимые испытания
Если производится несколько испытаний, причём
вероятность события А в каждом испытании не зависит от исходов
других испытаний, то такие испытания называются независимыми относительно события А.
Будем считать, что вероятность события А в каждом испытании одна и та же и равна р (вероятность не наступления события равна q=1-p).
Слайд 40Повторные независимые испытания
Теорема. Если вероятность р наступления
события А в каждом испытании постоянна, то вероятность того, что
событие А наступит m раз в n независимых испытаниях вычисляется по формуле Бернулли:
Слайд 41Задача
Пример. Вероятность того, что посетитель магазина совершит
покупку равна 0,25. Какова вероятность того, что среди первых шести
посетителей окажется два покупателя?
Решение:
Слайд 42Дискретная случайная величина
Случайной называют величину, которая в
результате испытания принимает одно единственное возможное значение, наперёд неизвестное и
зависящее от случайных причин, которые не могут быть учтены заранее. (Обозначаются большими латинскими буквами, а значения случайной величины соответствующими маленькими).
Слайд 43Дискретная случайная величина
Дискретной (прерывной) называют случайную величину, которая
принимает отдельные, изолированные возможные значения с определёнными вероятностями.
Законом
распределения дискретной случайной величины называют соответствие между возможными значениями и их вероятностями.
Слайд 44Дискретная случайная величина
Обычно закон распределения дискретной случайной величины
представляется в виде таблицы:
Следует помнить, что
Слайд 45Задача
Пример. Команда состоит из двух стрелков. Число
очков, выбиваемых каждым из них одним выстрелом, являются случайными величинами
X и Y, которые описываются следующими законами распределения:
Слайд 46Задача
Составить закон распределения количества очков, выбиваемых командой
при одновременном залпе (X+Y).
Решение:
Слайд 49Дискретная случайная величина
Закон распределения дискретной случайной величины называют
биномиальным, если вероятность числа проявлений события в независимых испытаниях, в
каждом из которых событие проявляется с вероятностью р, вычисляется по формуле Бернулли.
Слайд 50Дискретная случайная величина
Закон распределения полностью характеризует случайную величину,
однако не всегда он известен и приходится пользоваться меньшими сведениями.
Иногда выгоднее пользоваться величинами, описывающими случайную величину суммарно. Такие величины называют числовыми характеристиками случайной величины.
Одной из важнейших числовых характеристик случайной величины является её математическое ожидание.
Слайд 51 Математическим ожиданием дискретной случайной величины М(Х) называют сумму
произведений всех её возможных значений на соответствующие этим значениям вероятности:
Слайд 52Задача
В том же примере вычислить математические ожидания
случайных величин X, Y, X+Y.
Решение:
Слайд 53Дискретная случайная величина
Вероятностный смысл математического ожидания: математическое ожидание
приближённо равно среднему арифметическому наблюдаемых значений случайной величины.
Слайд 54Дискретная случайная величина
Но в большинстве случаев математическое ожидание
не может в достаточной степени характеризовать случайную величину. (Например, средняя
зарплата служащих предприятия). Поэтому, наряду с математическим ожиданием используют дисперсию (или среднее квадратическое отклонение).
Слайд 55 Дисперсией случайной величины Х называется математическое ожидание квадрата
отклонения этой случайной величины от её математического ожидания.
Слайд 56Дискретная случайная величина
Среднее квадратическое отклонение (С.К.О.) вычисляется по
формуле:
Слайд 57Задача
В том же примере вычислить дисперсии случайных величин
X, Y, X+Y.
Решение:
Слайд 58 Функцией распределения случайной величины Х называется функция
выражающая
для каждого х вероятность того, что случайная величина Х примет
какое-нибудь значение, меньшее чем х.
Слайд 59 Случайная величина Х называется непрерывной, если её функция
распределения непрерывна во всех точках и дифференцируема всюду, кроме конечного
числа точек.
Слайд 60 Плотностью вероятности непрерывной случайной величины называется производная её
функции распределения.
Слайд 61Непрерывная случайная величина
Математическое ожидание и дисперсия непрерывной случайной
величины вычисляются по формулам:
Слайд 62Непрерывная случайная величина
Непрерывная случайная величина Х имеет на
отрезке [a; b] равномерный закон распределения, если плотность вероятности этой
величины имеет вид:
Слайд 63Непрерывная случайная величина
Непрерывная случайная величина Х имеет нормальный
закон распределения (гауссовский), если её плотность вероятности имеет вид:
где
Слайд 64Непрерывная случайная величина
Математическое ожидание и С.К.О. (или дисперсия)
являются параметрами нормального закона распределения.
Слайд 65Финансовый университет
при Правительстве Российской Федерации
Конец лекции