Составление дифференциального уравнения движения:
1.1. Выбрать систему координат – прямоугольную
(неподвижную) при неизвестной траектории движения, естественную (подвижную) при известной траектории, например, окружность или прямая линия. В последнем случае можно использовать одну прямолинейную координату. Начало отсчета совместить с начальным положением точки (при t = 0) или с равновесным положением точки, если оно существует, например, при колебаниях точки.
6
1.2. Изобразить точку в положении, соответствующем произвольному моменту времени (при t > 0) так, чтобы координаты были положительными
(s > 0, x > 0). При этом считаем также, что проекция скорости в этом положении также положительна. В случае колебаний проекция
скорости меняет знак, например, при возвращении к положению равновесия. Здесь следует принять, что в рассматриваемый момент
времени точка удаляется от положения равновесия. Выполнение этой рекомендации важно в дальнейшем при работе с силами
сопротивления, зависящими от скорости.
1.3. Освободить материальную точку от связей, заменить их действие реакциями, добавить активные силы.
1.4. Записать основной закон динамики в векторном виде, спроецировать на выбранные оси, выразить задаваемые или реактивные силы
через переменные время, координаты или скорости, если они от них зависят.
2. Решение дифференциальных уравнений:
2.1. Понизить производную, если уравнение не приводится к каноническому (стандартному) виду. например: или
2.2. Разделить переменные, например: или
2.4. Вычислить неопределенные интегралы в левой и правой частях уравнения, например:
2.3. Если в уравнении три переменных,
то сделать замену переменных, например: и затем разделить переменные.
Замечание. Вместо вычисления неопределенных интегралов можно вычислить определенные интегралы с переменным верхним пределом.
Нижние пределы представляют начальные значения переменных (начальные условия) .Тогда не требуется отдельного нахождения постоянной,
которая автоматически включается в решение, например:
Используя начальные условия, например, t = 0, vx = vx0, определить постоянную интегрирования:
2.5. Выразить скорость через производную координаты по времени, например, и повторить пункты 2.2 -2.4
Замечание. Если уравнение приводится к каноническому виду, имеющему стандартное решение, то это готовое решение и используется.
Постоянные интегрирования по прежнему находятся из начальных условий. См., например, колебания (лекция 4, стр.8).
Лекция 2 (продолжение 2.2)