Теорема Эйлера. Для любого выпуклого многогранника имеет место равенство
В - Р + Г = 2,
где В - число вершин, Р - число ребер и Г - число граней данного многогранника.
Ответ: Нет.
Ответ: а) В = 6, Г = 8;
б) В = 7, Г = 10.
Ответ: а) В = 8, Г = 6;
б) В = 10, Г = 7.
Ответ: В = 8, Г = 6, куб.
Ответ: В = 6, Г = 8, октаэдр.
Ответ: 0.
Ответ: Пусть пристроена n-угольная пирамида, тогда количество вершин станет (В+1), рёбер - (Р+n), граней - (Г+n). В – Р + Г не изменится.
Ответ: Пусть отсекли m-гранный угол, тогда количество вершин будет (В+m-1), рёбер - (Р+m), граней - (Г+1). В – Р + Г не изменится.
Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть