Разделы презентаций


ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ МЕДИЦИНСКИЙ РАДИОЛОГИЧЕСКИЙ

Содержание

Radioprotectors – a clinical perspectiveThe clinical problem of normal tissue damage associated with cancer radiotherapyOral mucositisdermatitis

Слайды и текст этой презентации

Слайд 1ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ
БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ

МЕДИЦИНСКИЙ РАДИОЛОГИЧЕСКИЙ НАУЧНЫЙ ЦЕНТР

МИНЗДРАВА РОССИИ
Radiomodifiers: Oxygen/Hypoxia; Radioprotectors


Roger

Martin
Peter MacCallum Cancer Centre
Melbourne, Australia

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕМЕДИЦИНСКИЙ РАДИОЛОГИЧЕСКИЙ НАУЧНЫЙ ЦЕНТРМИНЗДРАВА РОССИИRadiomodifiers: Oxygen/Hypoxia; RadioprotectorsRoger Martin Peter MacCallum Cancer CentreMelbourne, Australia

Слайд 2Radioprotectors – a clinical perspective
The clinical problem of normal tissue

damage associated with cancer radiotherapy
Oral mucositis
dermatitis

Radioprotectors – a clinical perspectiveThe clinical problem of normal tissue damage associated with cancer radiotherapyOral mucositisdermatitis

Слайд 3 …………….Similarly:

oro-pharyngeal mucosa (head and neck cancer)
rectal

mucosa (prostate, cervix)
oesophageal mucosa (lung)
small bowel

mucosa (various)
bladder (eg cervix)
lung (breast, TBI)
skin, hair follicles (various)

Radioprotectors – a clinical perspective

…………….Similarly: oro-pharyngeal mucosa (head and neck cancer) rectal mucosa (prostate, cervix) oesophageal mucosa (lung) small bowel

Слайд 4 …………….Similarly:

oro-pharyngeal mucosa (head and neck cancer)
rectal

mucosa (prostate, cervix)
oesophageal mucosa (lung)
small bowel

mucosa (various)
bladder (eg cervix)
lung (breast, TBI)
skin, hair follicles (various)

Radioprotectors – a clinical perspective

Problem normal tissues in cancer RT, that are accessible to topical delivery

→ topical radioprotection

…………….Similarly: oro-pharyngeal mucosa (head and neck cancer) rectal mucosa (prostate, cervix) oesophageal mucosa (lung) small bowel

Слайд 5 …………….Similarly:

oro-pharyngeal mucosa (head and neck cancer)
rectal

mucosa (prostate, cervix)
oesophageal mucosa (lung)
small bowel

mucosa (various)
bladder (eg cervix)
lung (breast, TBI)
skin, hair follicles (various)

Radioprotectors – a clinical perspective

Problem normal tissues in cancer RT, that are accessible to topical delivery

→ topical radioprotection

1

…………….Similarly: oro-pharyngeal mucosa (head and neck cancer) rectal mucosa (prostate, cervix) oesophageal mucosa (lung) small bowel

Слайд 6Radioprotectors – a clinical perspective
Skin reactions were a big problem

in the earlier RT era, with 250, 500 KV X-rays

Radioprotectors – a clinical perspectiveSkin reactions were a big problem in the earlier RT era, with 250,

Слайд 7Radioprotectors – a clinical perspective
Skin reactions were a big problem

in the earlier RT era, with 250, 500 KV X-rays

Radioprotectors – a clinical perspectiveSkin reactions were a big problem in the earlier RT era, with 250,

Слайд 8Seminars in Oncology, Vol 10; No. 1, Suppl. 1; March

1983
Review of early preclinical and clinical studies:
N-acetylcysteine
cysteamine
Radioprotectors – a clinical

perspective
Seminars in Oncology, Vol 10; No. 1, Suppl. 1; March 1983Review of early preclinical and clinical studies:N-acetylcysteinecysteamineRadioprotectors

Слайд 9Intrarectal Amifostine During External Beam Radiation Therapy for Prostate Cancer


Produces Significant Improvements in Quality of Life Measured by EPIC

Score

Nicole L. Simone, M.D.1, Cynthia Ménard, M.D.2, Benjamin P. Soule, M.D.1, Paul S. Albert,
Ph.D.3, Peter Guion, MS1, Sharon Smith, R.N.1, Denise Godette, C.C.P.R.1, Nancy S. Crouse,
R.N.1, Linda C. Sciuto, R.N.1, Theresa Cooley-Zgela, R.N.1, Kevin Camphausen, M.D.1, C.
Norman Coleman, M.D.1, and Anurag K. Singh, M.D.1

Int J Radiat Oncol Biol Phys. 2008 January 1; 70(1): 90–95

Radioprotectors – a clinical perspective

Intrarectal Amifostine During External Beam Radiation Therapy for Prostate Cancer Produces Significant Improvements in Quality of Life

Слайд 10New DNA-binding radioprotectors
Old radioprotectors
1950s
>4000 compounds synthesised
at Walter Reed Army

Institute in USA

New DNA-binding radioprotectorsOld radioprotectors1950s>4000 compounds synthesised at Walter Reed Army Institute in USA

Слайд 11New DNA-binding radioprotectors
Old radioprotectors
1950s
>4000 compounds synthesised
at Walter Reed Army

Institute in USA
2

New DNA-binding radioprotectorsOld radioprotectors1950s>4000 compounds synthesised at Walter Reed Army Institute in USA2

Слайд 12New DNA-binding radioprotectors
Old radioprotectors

New DNA-binding radioprotectorsOld radioprotectors

Слайд 13New DNA-binding radioprotectors
Old radioprotectors

New DNA-binding radioprotectorsOld radioprotectors

Слайд 14New DNA-binding radioprotectors
Old radioprotectors

New DNA-binding radioprotectorsOld radioprotectors

Слайд 15New DNA-binding radioprotectors
Old radioprotectors
Decreasing radioprotective efficacy
(Zeng et al)


New DNA-binding radioprotectorsOld radioprotectorsDecreasing radioprotective efficacy(Zeng et al)

Слайд 16New DNA-binding radioprotectors
Old radioprotectors
Decreasing radioprotective efficacy
(Zeng et al)

Corresponds to decreasing

DNA affinity
(modest;
electrostatic)

New DNA-binding radioprotectorsOld radioprotectorsDecreasing radioprotective efficacy(Zeng et al)Corresponds to decreasing DNA affinity(modest;electrostatic)

Слайд 17New DNA-binding radioprotectors
Old radioprotectors
Decreasing radioprotective efficacy
(Zeng et al)

Corresponds to decreasing

DNA affinity
(modest;
electrostatic)

Hence deliberately target radioprotectors to DNA!

New DNA-binding radioprotectorsOld radioprotectorsDecreasing radioprotective efficacy(Zeng et al)Corresponds to decreasing DNA affinity(modest;electrostatic)Hence deliberately target radioprotectors to DNA!

Слайд 18Mechanism of radioprotection by aminothiols

Mechanism of radioprotection by aminothiols

Слайд 19Mechanism of radioprotection by aminothiols
Aminothiols scavange hydroxyl radicals!

Mechanism of radioprotection by aminothiolsAminothiols scavange hydroxyl radicals!

Слайд 20OH• radical
(Direct ionisation)
DNA
COO•
anoxic
breakage
“Fixed” damage (breaks)
repair
PSH
aminothiol (radioprotector)
PS•
Summary
Less Damage
More Damage
oxygen
thiols
Mechanism of

radioprotection by aminothiols
Thiols scavange OH• radicals
O2 competes with DNA-C• for

PSH (and endogenous thiols)
OH• radical(Direct ionisation)DNACOO•anoxicbreakage“Fixed” damage (breaks)repairPSH aminothiol (radioprotector)PS•SummaryLess DamageMore DamageoxygenthiolsMechanism of radioprotection by aminothiolsThiols scavange OH• radicalsO2 competes

Слайд 21Scavenging of hydroxyl radicals

Repair of DNA radicals

Depletion of oxygen (extent

of protection much less for hypoxic cells)
Mechanism of radioprotection by

aminothiols
Scavenging of hydroxyl radicalsRepair of DNA radicalsDepletion of oxygen (extent of protection much less for hypoxic cells)Mechanism

Слайд 22Scavenging of hydroxyl radicals

Repair of DNA radicals

Depletion of oxygen (extent

of protection much less for hypoxic cells)
Mechanism of radioprotection by

aminothiols
Scavenging of hydroxyl radicalsRepair of DNA radicalsDepletion of oxygen (extent of protection much less for hypoxic cells)Mechanism

Слайд 23OH• radical
(Direct ionisation)
DNA
COO•
anoxic
breakage
“Fixed” damage (breaks)
repair
PSH
aminothiol (radioprotector)
PS•
Summary
Less Damage
More Damage
oxygen
thiols
Mechanism of

radioprotection by aminothiols
Thiols scavange OH• radicals
O2 competes with DNA-C• for

PSH (and endogenous thiols)
OH• radical(Direct ionisation)DNACOO•anoxicbreakage“Fixed” damage (breaks)repairPSH aminothiol (radioprotector)PS•SummaryLess DamageMore DamageoxygenthiolsMechanism of radioprotection by aminothiolsThiols scavange OH• radicalsO2 competes

Слайд 24Mechanism of radioprotection by aminothiols
Repair by aminothiols?

Mechanism of radioprotection by aminothiolsRepair by aminothiols?

Слайд 25Scavenging of hydroxyl radicals

Repair of DNA radicals

Depletion of oxygen (extent

of protection much less for hypoxic cells)
Mechanism of radioprotection by

aminothiols

3

Scavenging of hydroxyl radicalsRepair of DNA radicalsDepletion of oxygen (extent of protection much less for hypoxic cells)Mechanism

Слайд 26New DNA-binding radioprotectors
“Hoechst” DNA ligands
Bind in the minor groove

of DNA, with high affinity (Kd ~100nM)

New DNA-binding radioprotectors“Hoechst” DNA ligands Bind in the minor groove of DNA, with high affinity (Kd ~100nM)

Слайд 27New DNA-binding radioprotectors
“Hoechst” DNA ligands
Fluorescent; intensity increases upon binding

to DNA:
stain nuclei (chromosome aberrations; FACS – cell cycle

analysis)


New DNA-binding radioprotectors“Hoechst” DNA ligands Fluorescent; intensity increases upon binding to DNA: stain nuclei (chromosome aberrations; FACS

Слайд 28New DNA-binding radioprotectors
“Hoechst” DNA ligands
Hoechst 33342 has radioprotective activity

(Smith and Anderson, 1984; Young and Hill, 1989)
Fluorescent; intensity increases

upon binding to DNA:
stain nuclei (chromosome aberrations; FACS – cell cycle analysis)


New DNA-binding radioprotectors“Hoechst” DNA ligands Hoechst 33342 has radioprotective activity (Smith and Anderson, 1984; Young and Hill,

Слайд 29New DNA-binding radioprotectors
“Hoechst” DNA ligands
Both Hoechst 33342 and Hoechst

33258 protect isolated DNA from radiation-induced strand breakage (Martin et

al 1990)
New DNA-binding radioprotectors“Hoechst” DNA ligands Both Hoechst 33342 and Hoechst 33258 protect isolated DNA from radiation-induced strand

Слайд 30New DNA-binding radioprotectors
“Hoechst” DNA ligands
V79 cells

New DNA-binding radioprotectors“Hoechst” DNA ligands V79 cells

Слайд 31New DNA-binding radioprotectors
Lead optimisation I (“minor”)

New DNA-binding radioprotectorsLead optimisation I (“minor”)

Слайд 32New DNA-binding radioprotectors
Lead optimisation I (“minor”)

New DNA-binding radioprotectorsLead optimisation I (“minor”)

Слайд 33~8Gy
New DNA-binding radioprotectors
Lead optimisation I (“minor”)

~8GyNew DNA-binding radioprotectorsLead optimisation I (“minor”)

Слайд 34~8Gy
New DNA-binding radioprotectors
Lead optimisation I (“minor”)

~8GyNew DNA-binding radioprotectorsLead optimisation I (“minor”)

Слайд 35~8Gy
New DNA-binding radioprotectors
Lead optimisation I (“minor”)
Methylproamine
concentration in cell

culture medium is only 30mM!

~8GyNew DNA-binding radioprotectorsLead optimisation I (“minor”) Methylproamine concentration in cell culture medium is only 30mM!

Слайд 3610mM methylproamine
~23
~10
DMF ~ 23/10
DMF > 2
New DNA-binding radioprotectors

10mM methylproamine~23~10DMF ~ 23/10DMF > 2 New DNA-binding radioprotectors

Слайд 3710mM methylproamine
~23
~10
DMF ~ 23/10
DMF > 2
4mM WR1065 required for


DMF ~ 2
Methylproamine is more than 100- times more potent

than amifostine

New DNA-binding radioprotectors

10mM methylproamine~23~10DMF ~ 23/10DMF > 2 4mM WR1065 required for DMF ~ 2Methylproamine is more than 100-

Слайд 3810mM methylproamine
~23
~10
DMF ~ 23/10
DMF > 2
4mM WR1065 required for


DMF ~ 2
Methylproamine is more than 100- times more potent

than amifostine

New DNA-binding radioprotectors

4

10mM methylproamine~23~10DMF ~ 23/10DMF > 2 4mM WR1065 required for DMF ~ 2Methylproamine is more than 100-

Слайд 39Human keratinocytes
radioprotection
cytotoxicity
New DNA-binding radioprotectors

Human keratinocytesradioprotectioncytotoxicityNew DNA-binding radioprotectors

Слайд 40Human keratinocytes
radioprotection
cytotoxicity
Hurdle #1 - cytotoxicity
New Radioprotectors
Improve drug design to reduce

cytotoxicity

Human keratinocytesradioprotectioncytotoxicityHurdle #1 - cytotoxicityNew RadioprotectorsImprove drug design to reduce cytotoxicity

Слайд 41New analog
methylproamine
New Radioprotectors

New analogmethylproamineNew Radioprotectors

Слайд 42New analog
methylproamine
New Radioprotectors
Extensive lead optimisation supported by Sirtex Medical

New analogmethylproamineNew RadioprotectorsExtensive lead optimisation supported by Sirtex Medical

Слайд 43New analog
methylproamine
New Radioprotectors
Extensive lead optimisation supported by Sirtex Medical

New analogmethylproamineNew RadioprotectorsExtensive lead optimisation supported by Sirtex Medical

Слайд 44New analog
methylproamine
PF ~ 10
New Radioprotectors
Extensive lead optimisation supported by Sirtex

Medical

New analogmethylproaminePF ~ 10New RadioprotectorsExtensive lead optimisation supported by Sirtex Medical

Слайд 45New analog
methylproamine
PF ~ 10
cytotoxicity
New Radioprotectors
Extensive lead optimisation supported by Sirtex

Medical

New analogmethylproaminePF ~ 10cytotoxicityNew RadioprotectorsExtensive lead optimisation supported by Sirtex Medical

Слайд 46New analog
methylproamine
Extensive lead optimisation supported by Sirtex Medical
PF ~ 10
cytotoxicity
C50

– drug concentration that reduces clonogenic survival by 50%
New Radioprotectors

New analogmethylproamineExtensive lead optimisation supported by Sirtex MedicalPF ~ 10cytotoxicityC50 – drug concentration that reduces clonogenic survival

Слайд 47Lead optimisation
New Radioprotectors

Lead optimisationNew Radioprotectors

Слайд 48Lead optimisation
Pavel Lobachevsky
New Radioprotectors

Lead optimisationPavel LobachevskyNew Radioprotectors

Слайд 49October 2007
Lead optimisation
MP
New Radioprotectors
“Activity Map”

October 2007Lead optimisationMPNew Radioprotectors“Activity Map”

Слайд 50Lead optimisation
New Radioprotectors
Increasing radioprotection
Decreasing
cytotoxicity
Target zone

Lead optimisationNew RadioprotectorsIncreasing radioprotectionDecreasingcytotoxicity Target zone

Слайд 51Lead optimisation
New Radioprotectors
Increasing radioprotection
Decreasing
cytotoxicity

Lead optimisationNew RadioprotectorsIncreasing radioprotectionDecreasingcytotoxicity

Слайд 52Lead optimisation
New Radioprotectors
Increasing radioprotection
Decreasing
cytotoxicity

Lead optimisationNew RadioprotectorsIncreasing radioprotectionDecreasingcytotoxicity

Слайд 53Lead optimisation
New Radioprotectors
Increasing radioprotection
Decreasing
cytotoxicity

Lead optimisationNew RadioprotectorsIncreasing radioprotectionDecreasingcytotoxicity

Слайд 54Lead optimisation
New Radioprotectors
Increasing radioprotection
Decreasing
cytotoxicity

Lead optimisationNew RadioprotectorsIncreasing radioprotectionDecreasingcytotoxicity

Слайд 55Lead optimisation
New Radioprotectors
Increasing radioprotection
Decreasing
cytotoxicity

Lead optimisationNew RadioprotectorsIncreasing radioprotectionDecreasingcytotoxicity

Слайд 56Lead optimisation
New Radioprotectors
Increasing radioprotection
Decreasing
cytotoxicity

Lead optimisationNew RadioprotectorsIncreasing radioprotectionDecreasingcytotoxicity

Слайд 57Lead optimisation
New Radioprotectors
Increasing radioprotection
Decreasing
cytotoxicity

Lead optimisationNew RadioprotectorsIncreasing radioprotectionDecreasingcytotoxicity

Слайд 58Lead optimisation
New Radioprotectors
Increasing radioprotection
Decreasing
cytotoxicity

Lead optimisationNew RadioprotectorsIncreasing radioprotectionDecreasingcytotoxicity

Слайд 59Lead optimisation
New Radioprotectors
Increasing radioprotection
Decreasing
cytotoxicity

Lead optimisationNew RadioprotectorsIncreasing radioprotectionDecreasingcytotoxicity

Слайд 60Lead optimisation
New Radioprotectors
Increasing radioprotection
Decreasing
cytotoxicity

Lead optimisationNew RadioprotectorsIncreasing radioprotectionDecreasingcytotoxicity

Слайд 61Lead optimisation
New Radioprotectors
Some new analogs in the “target zone”; ie:

less cytotoxic than MP, and
improved radioprotective activity
Increasing radioprotection
Decreasing
cytotoxicity

Lead optimisationNew RadioprotectorsSome new analogs in the “target zone”; ie: less cytotoxic than MP, and improved radioprotective

Слайд 62Lead optimisation
New Radioprotectors
Some new analogs in the “target zone”; ie:

less cytotoxic than MP, and
improved radioprotective activity
Increasing radioprotection
Decreasing
cytotoxicity
5

Lead optimisationNew RadioprotectorsSome new analogs in the “target zone”; ie: less cytotoxic than MP, and improved radioprotective

Слайд 63New Radioprotectors

Hurdle #1 Cytotoxicity

New RadioprotectorsHurdle #1 Cytotoxicity

Слайд 64New Radioprotectors
Hurdle #2 Topical delivery
Target for radioprotector delivery is nuclei

of basal cells, which include stem cells

New RadioprotectorsHurdle #2 Topical deliveryTarget for radioprotector delivery is nuclei of basal cells, which include stem cells

Слайд 65“Hoechst” DNA ligands
New Radioprotectors
Hurdle #2 Topical delivery

“Hoechst” DNA ligands New RadioprotectorsHurdle #2 Topical delivery

Слайд 66“Hoechst” DNA ligands
New Radioprotectors
Hurdle #2 Topical delivery

“Hoechst” DNA ligands New RadioprotectorsHurdle #2 Topical delivery

Слайд 67Topical; drug mainly on surface
“dry”
New Radioprotectors
oral cavity
submucosa
Hurdle #2 Topical delivery

Topical; drug mainly on surface“dry”New Radioprotectorsoral cavitysubmucosaHurdle #2 Topical delivery

Слайд 68Topical; drug mainly on surface
“dry”
After adding drug plus buffer to

section:
Section saturated with drug in solution
New Radioprotectors
oral cavity
submucosa
Hurdle #2 Topical

delivery

Pavel Lobachevsky

Topical; drug mainly on surface“dry”After adding drug plus buffer to section:Section saturated with drug in solutionNew Radioprotectorsoral

Слайд 69Topical drug mainly on surface; despite many changes to formulation!
“dry”
After

adding drug plus buffer to section:
Section saturated with drug in

solution

New Radioprotectors

oral cavity

submucosa

Hurdle #2 Topical delivery

Topical drug mainly on surface; despite many changes to formulation!“dry”After adding drug plus buffer to section:Section saturated

Слайд 70New Radioprotectors
Hurdle #2 Topical delivery

New RadioprotectorsHurdle #2 Topical delivery

Слайд 71lipid barrier
basal cells
suprabasal cells
drug molecule
Lipid barrier prevents drug delivery to

basal cells
New Radioprotectors
Hurdle #2 Topical delivery

lipid barrierbasal cellssuprabasal cellsdrug moleculeLipid barrier prevents drug delivery to basal cellsNew RadioprotectorsHurdle #2 Topical delivery

Слайд 72lipid barrier
basal cells
suprabasal cells
drug molecule
Lipid barrier prevents drug delivery to

basal cells
New Radioprotectors
Hurdle #2 Topical delivery

lipid barrierbasal cellssuprabasal cellsdrug moleculeLipid barrier prevents drug delivery to basal cellsNew RadioprotectorsHurdle #2 Topical delivery

Слайд 73lipid barrier
basal cells
suprabasal cells
drug molecule
Lipid barrier prevents drug delivery to

basal cells
Prodrug strategy
Prodrug molecule
promoiety
Prodrug, with altered properties, penetrates barrier
New Radioprotectors
Hurdle

#2 Topical delivery
lipid barrierbasal cellssuprabasal cellsdrug moleculeLipid barrier prevents drug delivery to basal cellsProdrug strategyProdrug moleculepromoietyProdrug, with altered properties,

Слайд 74lipid barrier
basal cells
suprabasal cells
drug molecule
Lipid barrier prevents drug delivery to

basal cells
Prodrug strategy
Prodrug molecule
promoiety
New Radioprotectors
Prodrug, with altered properties, penetrates barrier
Hurdle

#2 Topical delivery
lipid barrierbasal cellssuprabasal cellsdrug moleculeLipid barrier prevents drug delivery to basal cellsProdrug strategyProdrug moleculepromoietyNew RadioprotectorsProdrug, with altered

Слайд 75lipid barrier
basal cells
suprabasal cells
drug molecule
Lipid barrier prevents drug delivery to

basal cells
Prodrug strategy
Prodrug molecule
promoiety
New Radioprotectors
Prodrug, with altered properties, penetrates barrier
Hurdle

#2 Topical delivery
lipid barrierbasal cellssuprabasal cellsdrug moleculeLipid barrier prevents drug delivery to basal cellsProdrug strategyProdrug moleculepromoietyNew RadioprotectorsProdrug, with altered

Слайд 76lipid barrier
basal cells
suprabasal cells
drug molecule
Lipid barrier prevents drug delivery to

basal cells
Prodrug strategy
Prodrug molecule
promoiety
New Radioprotectors
Prodrug, with altered properties, penetrates barrier,

and

Parent drug delivered to basal cell nuclei

Hurdle #2 Topical delivery

lipid barrierbasal cellssuprabasal cellsdrug moleculeLipid barrier prevents drug delivery to basal cellsProdrug strategyProdrug moleculepromoietyNew RadioprotectorsProdrug, with altered

Слайд 77Recent results with prodrug strategy
“dry”
After adding drug plus buffer to

section:
Section saturated with drug in solution
New Radioprotectors
Hurdle #2 Topical delivery

Recent results with prodrug strategy“dry”After adding drug plus buffer to section:Section saturated with drug in solutionNew RadioprotectorsHurdle

Слайд 78lipid barrier
basal cells
suprabasal cells
drug molecule
Lipid barrier prevents drug delivery to

basal cells
Prodrug strategy
Prodrug molecule
promoiety
New Radioprotectors
Prodrug, with altered properties, penetrates barrier,

and

Parent drug delivered to basal cell nuclei

Hurdle #2 Topical delivery

6

lipid barrierbasal cellssuprabasal cellsdrug moleculeLipid barrier prevents drug delivery to basal cellsProdrug strategyProdrug moleculepromoietyNew RadioprotectorsProdrug, with altered

Слайд 79New Radioprotectors
Hurdle #2 Topical delivery

New RadioprotectorsHurdle #2 Topical delivery

Слайд 80Hurdle #3 Preclinical proof-of-principle (POP) of

Topical radioprotection
Mouse tongue model (Prof Wolfgang Doerr; Dresden)....
New Radioprotectors

Hurdle #3 Preclinical proof-of-principle (POP) of 	    Topical radioprotectionMouse tongue model (Prof Wolfgang Doerr;

Слайд 81New Radioprotectors
Mouse tongue model (Prof Wolfgang Doerr; Dresden)....now set-up at

PeterMac
Hurdle #3 Preclinical (POP) of Topical radioprotection

New RadioprotectorsMouse tongue model (Prof Wolfgang Doerr; Dresden)....now set-up at PeterMacHurdle #3 Preclinical (POP) of Topical radioprotection

Слайд 82Dresden model @petermac
Andrea Smith and Theresa Holt
New Radioprotectors

Dresden model @petermacAndrea Smith and Theresa HoltNew Radioprotectors

Слайд 8518 Gy in 241 seconds!

18 Gy in 241 seconds!

Слайд 87Dresden – tongue ulcer
New Radioprotectors

Dresden – tongue ulcerNew Radioprotectors

Слайд 88Dresden – tongue ulcer
New Radioprotectors

Dresden – tongue ulcerNew Radioprotectors

Слайд 89New Radioprotectors
10mM prodrug

Vehicle-only

New Radioprotectors10mM prodrug Vehicle-only

Слайд 90 Vehicle-only ED50 = 13.8Gy ± 0.31 (St E)
10mM

prodrug ED50 = 16.9 ± 2.7 (St E)

[p=0.0129]
Pavel Lobachevsky
New Radioprotectors
10mM

prodrug

Vehicle-only
Vehicle-only ED50 = 13.8Gy ± 0.31 (St E)10mM prodrug ED50 = 16.9 ± 2.7 (St

Слайд 91 Vehicle-only ED50 = 13.8Gy ± 0.31 (St E)
10mM

prodrug ED50 = 16.9 ± 2.7 (St E)
Dose Reduction Factor

= 1.22 (16.9/13.8)

[p=0.0129]

New Radioprotectors

10mM prodrug

Vehicle-only

Hurdle #3 Preclinical (POP) of Topical radioprotection


Vehicle-only ED50 = 13.8Gy ± 0.31 (St E)10mM prodrug ED50 = 16.9 ± 2.7 (St

Слайд 92 Vehicle-only ED50 = 13.8Gy ± 0.31 (St E)
10mM

prodrug ED50 = 16.9 ± 2.7 (St E)
Dose Reduction Factor

= 1.22 (16.9/13.8)

[p=0.0129]

New Radioprotectors

10mM prodrug

Vehicle-only

Hurdle #3 Preclinical (POP) of Topical radioprotection


7

Vehicle-only ED50 = 13.8Gy ± 0.31 (St E)10mM prodrug ED50 = 16.9 ± 2.7 (St

Слайд 93 Vehicle-only ED50 = 13.8Gy ± 0.31 (St E)
10mM

prodrug ED50 = 16.9 ± 2.7 (St E)
Dose Reduction Factor

= 1.22 (16.9/13.8)

[p=0.0129]

New Radioprotectors

10mM prodrug

Vehicle-only

BUT is DRF ~ 1.2? Enough?

Vehicle-only ED50 = 13.8Gy ± 0.31 (St E)10mM prodrug ED50 = 16.9 ± 2.7 (St

Слайд 94Soreness ± erythema
Erythema, ulcers; patient can swallow solid food
Mucositis to the extent that alimentation is not possible
Ulcers

with extensive erythema; patient cannot swallow food
Grade 2
Grade 3
Severe Mucositis
Grade

1

Grade 4

New Radioprotectors

Development of a topical radioprotector to ameliorate normal tissue toxicity in RT patients

DRF ~ 1.2

80% of H&N RT patients
(Bellm et al 2000)

Soreness ± erythemaErythema, ulcers;  patient can swallow solid foodMucositis to the extent that alimentation is not

Слайд 95Soreness ± erythema
Erythema, ulcers; patient can swallow solid food
Mucositis to the extent that alimentation is not possible
Ulcers

with extensive erythema; patient cannot swallow food
Grade 2
Grade 3
Severe Mucositis
Grade

1

Grade 4

New Radioprotectors

Development of a topical radioprotector to ameliorate normal tissue toxicity in RT patients

DRF ~ 1.2

80% of H&N RT patients
(Bellm et al 2000)

8

Soreness ± erythemaErythema, ulcers;  patient can swallow solid foodMucositis to the extent that alimentation is not

Слайд 96 Vehicle-only ED50 = 13.8Gy ± 0.31 (St E)
10mM

prodrug ED50 = 16.9 ± 2.7 (St E)

Dose Reduction Factor

= 1.22 (16.9/13.8)

[p=0.0129]

New Radioprotectors

10mM prodrug

Vehicle-only

Vehicle-only ED50 = 13.8Gy ± 0.31 (St E)10mM prodrug ED50 = 16.9 ± 2.7 (St

Слайд 97Preclinical steps remaining:

evaluate the last few-several parent drugs

select

final lead (some toxicology)

confirm pre-clinical POP of topical radioprotection

in fractionation model

develop “clinically friendly” topical formulation

New Radioprotectors

Preclinical steps remaining: evaluate the last few-several parent drugs select final lead (some toxicology) confirm pre-clinical POP

Слайд 98Preclinical steps remaining:

evaluate the last few-several parent drugs

select

final lead (some toxicology)

confirm pre-clinical POP of topical radioprotection

in fractionation model

develop “clinically friendly” topical formulation

New Radioprotectors

Preclinical steps remaining: evaluate the last few-several parent drugs select final lead (some toxicology) confirm pre-clinical POP

Слайд 99New Radioprotectors
The mechanism of radioprotection

New RadioprotectorsThe mechanism of radioprotection

Слайд 100Box+.  B +H++e
e
New Radioprotectors
The mechanism of radioprotection
(E ~

1.2V)
Base damage,
strand breaks,
etc
Lig  Ligox+. + e

(E ~ 0.9V)
Box+.  B +H++e eNew RadioprotectorsThe mechanism of radioprotection(E ~ 1.2V)Base damage, strand breaks, etcLig  Ligox+.

Слайд 101Box+.  B +H++e
Lig  Ligox+. + e

(E ~ 0.9V)
“hole”
(+)
New Radioprotectors
The mechanism of radioprotection
(E ~ 1.2V)
Base damage,


strand breaks,
etc
Box+.  B +H++e Lig  Ligox+. + e  (E ~ 0.9V)“hole”(+)New RadioprotectorsThe mechanism of radioprotection(E

Слайд 102Box+.  B +H++e
Lig  Ligox+. + e

(E ~ 0.9V)
“hole”
(+)
New Radioprotectors
The mechanism of radioprotection
(E ~ 1.2V)
Base damage,


strand breaks,
etc

Evidence:

precedence; mimics endogenous, non-enzymic repair

pulse radiolysis studies

mechanistic comparison with aminothiols

9

Box+.  B +H++e Lig  Ligox+. + e  (E ~ 0.9V)“hole”(+)New RadioprotectorsThe mechanism of radioprotection(E

Слайд 103Box+.  B +H++e
Lig  Ligox+. + e

(E ~ 0.9V)
“hole”
(+)
New Radioprotectors
The mechanism of radioprotection
(E ~ 1.2V)
Base damage,


strand breaks,
etc

Evidence:

precedence; mimics endogenous, non-enzymic repair

pulse radiolysis studies

mechanistic comparison with aminothiols

Box+.  B +H++e Lig  Ligox+. + e  (E ~ 0.9V)“hole”(+)New RadioprotectorsThe mechanism of radioprotection(E

Слайд 104Box+.  B +H++e
Lig  Ligox+. + e

(E ~ 0.9V)
“hole”
(+)
New Radioprotectors
The mechanism of radioprotection
(E ~ 1.2V)
Base damage,


strand breaks,
etc

Evidence:

precedence; mimics endogenous, non-enzymic repair

pulse radiolysis studies

mechanistic comparison with aminothiols

Box+.  B +H++e Lig  Ligox+. + e  (E ~ 0.9V)“hole”(+)New RadioprotectorsThe mechanism of radioprotection(E

Слайд 105Fast chemical repair of initial DNA lesions

Fast chemical repair of initial DNA lesions

Слайд 106 G+
+
Fast chemical repair of initial DNA lesions

G++Fast chemical repair of initial DNA lesions

Слайд 107 G+
deprotonation

G+deprotonation

Слайд 108 G+
DNAssb
deprotonation
Electron and proton
transfer
Tyr
G and Tyr-
(ie Repair of DNA)
Tsoi

et al (Milligan) Org Biomol Chem 8, 2010

G+DNAssbdeprotonationElectron and protontransfer TyrG and Tyr-(ie Repair of DNA)Tsoi et al (Milligan) Org Biomol Chem 8,

Слайд 109 G+
DNAssb
Tyr
G
Electron and proton transfer
Fast chemical repair of

initial DNA lesions
Tsoi et al (Milligan) Org Biomol Chem 8,

2010

Tyrosine is a radioprotector in model experiments with plasmid DNA

G+DNAssbTyr GElectron and proton transfer Fast chemical repair of initial DNA lesionsTsoi et al (Milligan) Org

Слайд 110 G+
DNAssb
Tyr
G
Electron and proton transfer
Fast chemical repair of

initial DNA lesions
Tsoi et al (Milligan) Org Biomol Chem 8,

2010
G+DNAssbTyr GElectron and proton transfer Fast chemical repair of initial DNA lesionsTsoi et al (Milligan) Org

Слайд 111(amino acid content per nucleosome)
(33)
(nil)
(4)
Fast chemical repair of initial

DNA lesions
Lee et al (Milligan) Rad Res 177, 2012

(amino acid content per nucleosome) (33)(nil)(4)Fast chemical repair of initial DNA lesionsLee et al (Milligan) Rad Res

Слайд 112Fast chemical repair of initial DNA lesions
Lee et al (Milligan)

Rad Res 177, 2012

Fast chemical repair of initial DNA lesionsLee et al (Milligan) Rad Res 177, 2012

Слайд 113Fast chemical repair of initial DNA lesions

Fast chemical repair of initial DNA lesions

Слайд 114Fast chemical repair of initial DNA lesions
10

Fast chemical repair of initial DNA lesions10

Слайд 115Jeggo and Lavin Int. J. Radiat. Biol. 85, 1061. 2009
Fast

(early) chemical repair of initial DNA lesions

Jeggo and Lavin Int. J. Radiat. Biol. 85, 1061. 2009Fast (early) chemical repair of initial DNA lesions

Слайд 116Box+.  B +H++e
Lig  Ligox+. + e

(E ~ 0.9V)
“hole”
(+)
New Radioprotectors
The mechanism of radioprotection
(E ~ 1.2V)
Base damage,


strand breaks,
etc

Evidence:

precedence; mimics endogenous, non-enzymic repair

pulse radiolysis studies

mechanistic comparison with aminothiols

Box+.  B +H++e Lig  Ligox+. + e  (E ~ 0.9V)“hole”(+)New RadioprotectorsThe mechanism of radioprotection(E

Слайд 117Pulse Radiolysis

Pulse Radiolysis

Слайд 118Pulse Radiolysis

Pulse Radiolysis

Слайд 119Pulse Radiolysis

Pulse Radiolysis

Слайд 120Pulse Radiolysis

Pulse Radiolysis

Слайд 121Pulse Radiolysis

Pulse Radiolysis

Слайд 122Pulse Radiolysis

Pulse Radiolysis

Слайд 123New Radioprotectors
The mechanism of radioprotection; Pulse Radiolysis studies
SeO42- + eaq

 SeO3.-
(2M tertBuOH; 200nsec)
Bob Anderson
Univ of Auckland

New RadioprotectorsThe mechanism of radioprotection; Pulse Radiolysis studiesSeO42- + eaq  SeO3.-(2M tertBuOH; 200nsec)Bob AndersonUniv of Auckland

Слайд 124New Radioprotectors
The mechanism of radioprotection; Pulse Radiolysis studies
SeO42- + eaq

 SeO3.-
(2M tertBuOH; 200nsec)

New RadioprotectorsThe mechanism of radioprotection; Pulse Radiolysis studiesSeO42- + eaq  SeO3.-(2M tertBuOH; 200nsec)

Слайд 125New Radioprotectors
The mechanism of radioprotection; Pulse Radiolysis studies
SeO42- + eaq

 SeO3.-
(2M tertBuOH; 200nsec)
11

New RadioprotectorsThe mechanism of radioprotection; Pulse Radiolysis studiesSeO42- + eaq  SeO3.-(2M tertBuOH; 200nsec)11

Слайд 126New Radioprotectors
The mechanism of radioprotection; Pulse Radiolysis studies
SeO42- + eaq

 SeO3.-
(2M tertBuOH; 200nsec)

New RadioprotectorsThe mechanism of radioprotection; Pulse Radiolysis studiesSeO42- + eaq  SeO3.-(2M tertBuOH; 200nsec)

Слайд 127New Radioprotectors
The mechanism of radioprotection; Pulse Radiolysis studies
(OD/Gy) = a{1-(1-[ligand]/[DNA])2n+1}

+ b,

New RadioprotectorsThe mechanism of radioprotection; Pulse Radiolysis studies(OD/Gy) = a{1-(1-[ligand]/[DNA])2n+1} + b,

Слайд 128New Radioprotectors
The mechanism of radioprotection; Pulse Radiolysis studies
n = max

range (bp) of e or hole transfer
(OD/Gy) = a{1-(1-[ligand]/[DNA])2n+1} +

b,
New RadioprotectorsThe mechanism of radioprotection; Pulse Radiolysis studiesn = max range (bp) of e or hole transfer(OD/Gy)

Слайд 129New Radioprotectors
The mechanism of radioprotection - Summary of Pulse Radiolysis

studies
Experiments with a series of different DNA ligands:

The rate of

ligand oxidation increases as Eligand decreases (E= 0.9-1V)

The range of charge transfer (15-35 DNAbp) also increases as Eligand increases

The PR data generally correlate with in vitro cell culture data; better reducing agents (lower E) are better radioprotectors (higher DMF) [some exceptions; due to differences in efficiency of drug uptake into cells and nuclei]
New RadioprotectorsThe mechanism of radioprotection - Summary of Pulse Radiolysis studiesExperiments with a series of different DNA

Слайд 130New Radioprotectors
The mechanism of radioprotection - Summary of Pulse Radiolysis

studies
Experiments with a series of different DNA ligands:

The rate of

ligand oxidation increases as Eligand decreases (E= 0.9-1V)

The range of charge transfer (15-35 DNAbp) also increases as Eligand increases

The PR data generally correlate with in vitro cell culture data; better reducing agents (lower E) are better radioprotectors (higher DMF) [some exceptions; due to differences in efficiency of drug uptake into cells and nuclei]

12

New RadioprotectorsThe mechanism of radioprotection - Summary of Pulse Radiolysis studiesExperiments with a series of different DNA

Слайд 131Box+.  B +H++e
Lig  Ligox+. + e

(E ~ 0.9V)
“hole”
(+)
New Radioprotectors
The mechanism of radioprotection
(E ~ 1.2V)
Base damage,


strand breaks,
etc

Evidence:

precedence; mimics endogenous, non-enzymic repair

pulse radiolysis studies

mechanistic comparison with aminothiols

Box+.  B +H++e Lig  Ligox+. + e  (E ~ 0.9V)“hole”(+)New RadioprotectorsThe mechanism of radioprotection(E

Слайд 132Box+.  B +H++e
Lig  Ligox+. + e

(E ~ 0.9V)
“hole”
(+)
New Radioprotectors
The mechanism of radioprotection
(E ~ 1.2V)
Base damage,


strand breaks,
etc

Evidence:

precedence; mimics endogenous, non-enzymic repair

pulse radiolysis studies

mechanistic comparison with aminothiols

Box+.  B +H++e Lig  Ligox+. + e  (E ~ 0.9V)“hole”(+)New RadioprotectorsThe mechanism of radioprotection(E

Слайд 133New Radioprotectors
The mechanism of radioprotection; combination of analogue + WR1065
(10mM;

DMF ~2)
(10 mM)

New RadioprotectorsThe mechanism of radioprotection; combination of analogue + WR1065(10mM; DMF ~2)(10 mM)

Слайд 134New Radioprotectors
The mechanism of radioprotection; combination of analogue + WR1065
(10mM;

DMF ~2)
(5mM; DMF ~2)
WR1065 (5mM)

New RadioprotectorsThe mechanism of radioprotection; combination of analogue + WR1065(10mM; DMF ~2)(5mM; DMF ~2)WR1065 (5mM)

Слайд 135New Radioprotectors
The mechanism of radioprotection; combination of analogue + WR1065
(10mM;

DMF ~2)
(5mM; DMF ~2)
WR1065 (5mM)
(Combination; DMF ~4 !!)
(10 mM)

New RadioprotectorsThe mechanism of radioprotection; combination of analogue + WR1065(10mM; DMF ~2)(5mM; DMF ~2)WR1065 (5mM)(Combination; DMF ~4

Слайд 136New Radioprotectors
The mechanism of radioprotection; combination of analogue + WR1065
(10mM;

DMF ~2)
(5mM; DMF ~2)
WR1065 (5mM)
(Combination; DMF ~4 !!)
The two types

of radioprotectors are ~additive, reflecting largely independent mechanisms

(10 mM)

New RadioprotectorsThe mechanism of radioprotection; combination of analogue + WR1065(10mM; DMF ~2)(5mM; DMF ~2)WR1065 (5mM)(Combination; DMF ~4

Слайд 137New Radioprotectors
The mechanism of radioprotection; combination of analogue + WR1065
(10mM;

DMF ~2)
(5mM; DMF ~2)
WR1065 (5mM)
(Combination; DMF ~4 !!)
The two types

of radioprotectors are ~additive, reflecting largely independent mechanisms

(10 mM)

13

New RadioprotectorsThe mechanism of radioprotection; combination of analogue + WR1065(10mM; DMF ~2)(5mM; DMF ~2)WR1065 (5mM)(Combination; DMF ~4

Слайд 138Fast chemical repair of initial DNA lesions
Major target for new

radioprotectors
Major target for “old” aminothiols

Fast chemical repair of initial DNA lesionsMajor target for new radioprotectorsMajor target for “old” aminothiols

Слайд 139New Radioprotectors
SUMMARY
The new radioprotectors:
act as DNA-binding antioxidants


“hole”
(+)

New RadioprotectorsSUMMARYThe new radioprotectors: act as DNA-binding antioxidants“hole”(+)

Слайд 140New Radioprotectors
SUMMARY
The new radioprotectors:
act as DNA-binding antioxidants

an

extensive lead-optimisation program (> 150 analogs) has improved in vitro

radioprotective activity relative to cytoxicity, and is nearing completion.


“hole”
(+)

New RadioprotectorsSUMMARYThe new radioprotectors: act as DNA-binding antioxidants an extensive lead-optimisation program (> 150 analogs) has improved

Слайд 141New Radioprotectors
SUMMARY
The new radioprotectors:
act as DNA-binding antioxidants

an

extensive lead-optimisation program (> 150 analogs) has improved in vitro

radioprotective activity relative to cytoxicity, and is nearing completion.

a prodrug strategy enables effective topical delivery to basal cell nuclei of oral mucosa (mouse and hamster)




“hole”
(+)

New RadioprotectorsSUMMARYThe new radioprotectors: act as DNA-binding antioxidants an extensive lead-optimisation program (> 150 analogs) has improved

Слайд 142New Radioprotectors
SUMMARY
The new radioprotectors:
act as DNA-binding antioxidants

an

extensive lead-optimisation program (> 150 analogs) has improved in vitro

radioprotective activity relative to cytoxicity, and is nearing completion.

a prodrug strategy enables effective topical delivery to basal cell nuclei of oral mucosa (mouse and hamster)

proof-of principle of topical radioprotection of oral mucosa has been demonstrated for mouse; DRF~1.2


“hole”
(+)

New RadioprotectorsSUMMARYThe new radioprotectors: act as DNA-binding antioxidants an extensive lead-optimisation program (> 150 analogs) has improved

Слайд 143New Radioprotectors
SUMMARY
“hole”
(+)
The new radioprotectors:
act as DNA-binding antioxidants

an

extensive lead-optimisation program (> 150 analogs) has improved in vitro

radioprotective activity relative to cytoxicity, and is nearing completion.

a prodrug strategy enables effective topical delivery to basal cell nuclei of oral mucosa (mouse and hamster)

proof-of principle of topical radioprotection of oral mucosa has been demonstrated for mouse; DRF~1.2

only a few minor hurdles remain prior
to clinical studies

13

New RadioprotectorsSUMMARY“hole”(+)The new radioprotectors: act as DNA-binding antioxidants an extensive lead-optimisation program (> 150 analogs) has improved

Слайд 144New Radioprotectors
SUMMARY
“hole”
(+)
The new radioprotectors:
act as DNA-binding antioxidants

an

extensive lead-optimisation program (> 150 analogs) has improved in vitro

radioprotective activity relative to cytoxicity, and is nearing completion.

a prodrug strategy enables effective topical delivery to basal cell nuclei of oral mucosa (mouse and hamster)

proof-of principle of topical radioprotection of oral mucosa has been demonstrated for mouse; DRF~1.2

only a few minor hurdles remain prior
to clinical studies

New RadioprotectorsSUMMARY“hole”(+)The new radioprotectors: act as DNA-binding antioxidants an extensive lead-optimisation program (> 150 analogs) has improved

Слайд 145Why was an Australian radiobiologist visiting Prof Vyturin in Obninsk?
Answer

to follow later......

A special case of radiomodification!
Why was an Australian radiobiologist visiting Prof Vyturin in Obninsk?Answer to follow later......

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика