Разделы презентаций


НУ КЛЕИНОВЫЕ КИСЛОТЫ. (Отработка )

Открытие нуклеиновых кислот связано с именем молодого врача из города Базеля (Швейцария) Фридриха Мишера. После окончания медицинского факультета Мишер был послан для усовершенствования и работы над диссертацией в Тюбинген (Германия) в физиолого-химическую

Слайды и текст этой презентации

Слайд 1НУКЛЕИНОВЫЕ КИСЛОТЫ. (Отработка)
студентки группы С-105
Юсуповой Дианы
Руководитель
 Елена Михайловна

НУКЛЕИНОВЫЕ КИСЛОТЫ. (Отработка)студентки группы С-105Юсуповой ДианыРуководитель Елена Михайловна

Слайд 2Открытие нуклеиновых кислот связано с именем молодого врача из города Базеля

(Швейцария) Фридриха Мишера. После окончания медицинского факультета Мишер был послан

для усовершенствования и работы над диссертацией в Тюбинген (Германия) в физиолого-химическую лабораторию, возглавляемую Ф. Гоппе-Зейлером. Тюбингенская лаборатория в то время была известна ученому миру. Пройдя практику по органической химии, Мишер приступил к работе в биохимической лаборатории. Ему было поручено заняться изучением химического состава гноя. Молодой ученый не возражал против предложенной темы, так как считал лейкоциты, присутствующие в гное, одними из самых простых клеток.

Открытие нуклеиновых кислот связано с именем молодого врача из города Базеля (Швейцария) Фридриха Мишера. После окончания медицинского факультета

Слайд 3Нуклеиновые кислоты в природе встречаются во всех живых клетках. Живые

клетки, за исключением сперматозоидов, в норме содержат значительно больше рибонуклеиновой,

чем дезоксирибонуклеиновой кислоты.














На методы выделения дезоксирибонуклеиновых кислот оказало большое влияние то обстоятельство, что, тогда как рибонуклеопротеиды и рибонуклеиновые кислоты растворимы в разбавленном (0,15 М) растворе хлористого натрия, дезоксирибонуклеопротеидные комплексы фактически в нем нерастворимы.
Поэтому гомогенизированный орган или организм тщательно промывают разбавленным солевым раствором, из остатка с помощью крепкого солевого раствора экстрагируют дезоксирибонуклеиновую кислоту, которую осаждают затем добавлением этанола.




Нуклеиновые кислоты в природе встречаются во всех живых клетках. Живые клетки, за исключением сперматозоидов, в норме содержат

Слайд 4В клетках эукариот (например, животных или растений) ДНК находится в

ядре клетки в составе хромосом, а также в некоторых клеточных

органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеотид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов.

В клетках эукариот (например, животных или растений) ДНК находится в ядре клетки в составе хромосом, а также

Слайд 5ПОЛУЧЕНИЕ НУКЛЕИНОВЫХ КИСЛОТ
В клетках нуклеиновые кислоты связаны с белками, образуя

нуклеопротеиды. Выделение нуклеиновых кислот сводится к очистке их от белков.

Для этого препараты, содержащие нуклеиновые кислоты, обрабатывают ПАВ и экстрагируют белки фенолом. Послед, очистка и фракционирование нуклеиновых кислот проводятся с помощью ультрацентрифугирования, различных видов жидкостной хроматографии и гель - электрофореза. Для получения индивидуальных нуклеиновых кислот обычно используют различные варианты последнего метода.
Современные методы химического синтеза нуклеиновых кислот позволяют получать крупные фрагменты ДНК, в том числе целые гены. Методические основы химически - ферментативных методов синтеза ДНК разработаны X. Кораной.

ПОЛУЧЕНИЕ НУКЛЕИНОВЫХ КИСЛОТВ клетках нуклеиновые кислоты связаны с белками, образуя нуклеопротеиды. Выделение нуклеиновых кислот сводится к очистке

Слайд 6Они включают:
химический синтез комплементарных, взаимоперекрывающихся олигонуклеотидов, из которых затем в

результате комплементационных взаимодействий выстраиваются дуплексы - фрагменты молекулы синтезируемой ДНК

с несовпадающими разрывами в обеих цепях;
соединение (лигирование) таких олигонуклеотидов в составе дуплекса с помощью фермента Т4 ДНК-лигазы. Сборку протяженных ДНК из синтетически однотяжевых олигонуклеотидов проводят в несколько этапов. Сначала собирают небольшие дуплексы с "липкими" концами (однотяжевыми комплементарными участками), из которых затем последовательно формируют более протяженные структуры. Таким образом могут быть получены искусственные фрагменты ДНК большой длины и с любой нуклеотидной последовательностью. С помощью генетической инженерии возможно клонирование (получение в индивидуальном виде и размножение) искусственных ДНК.
Они включают:химический синтез комплементарных, взаимоперекрывающихся олигонуклеотидов, из которых затем в результате комплементационных взаимодействий выстраиваются дуплексы - фрагменты

Слайд 7Стандартность операций в твердофазном синтезе олигонуклеотидов явилась основой для автоматизации

процесса.
Принцип работы автомата-синтезатора основан на подаче в реактор с

помощью насоса (под контролем микропроцессора) защищенных нуклеотидных компонентов реагентов и растворителей по заданной программе в колонку, содержащую полимерный носитель с закрепленным на нем первым нуклеозидом. После окончания синтеза и отделения полностью защищенного олигонуклеотида от полимерного носителя проводят деблокирование, очистку и анализ синтезированных фрагментов ДНК. Так, с помощью гидрофосфорильного метода в автомате - синтезаторе за несколько часов получают 30-40-звенные олигонуклеотиды; возможен синтез более чем 100-звенных фрагментов ДНК. Разработаны синтезаторы, позволяющие проводить одновременно синтез несколько олигонуклеотидов.

Стандартность операций в твердофазном синтезе олигонуклеотидов явилась основой для автоматизации процесса. Принцип работы автомата-синтезатора основан на подаче

Слайд 8ХИМИЧЕСКИЕ СВОЙСТВА НУКЛЕИНОВЫХ КИСЛОТ
Нуклеиновые кислоты:
хорошо растворимы в воде
практически не растворимы в

органических растворителях.
очень чувствительны к действию температуры и критических значений уровня

pH.
молекулы ДНК с высокой молекулярной массой, выделенные из природных источников, способны фрагментироваться под действием механических сил, например при перемешивании раствора.
нуклеиновые кислоты фрагментируются ферментами -- нуклеазами.

ХИМИЧЕСКИЕ СВОЙСТВА НУКЛЕИНОВЫХ КИСЛОТНуклеиновые кислоты:хорошо растворимы в водепрактически не растворимы в органических растворителях.очень чувствительны к действию температуры и

Слайд 9Химические свойства РНК.
Напоминают свойства ДНК, однако наличие дополнительных групп ОН

в рибозе и меньшее (в сравнении с ДНК) содержание стабилизированных

спиральных участков делает молекулы РНК химически более уязвимыми. При действии кислот или щелочей основные фрагменты полимерной цепи Р(О)-О-СН2 легко гидролизуются, группировки А, У, Г и Ц отщепляются легче. Если нужно получить мономерные фрагменты, сохранив при этом химически связанные гетероциклы, используют деликатно действующие ферменты, называемые рибонкулеазами
Химические свойства РНК.Напоминают свойства ДНК, однако наличие дополнительных групп ОН в рибозе и меньшее (в сравнении с

Слайд 10Химические свойства ДНК
В воде ДНК образует вязкие растворы, при нагревании

таких растворов до 60°С или при действии щелочей двойная спираль

распадается на две составляющие цепи, которые вновь могут объединиться, если вернуться к исходным условиям. В слабокислых условиях происходит гидролиз, в результате частично расщепляются фрагменты - Р-О-СН2- с образованием фрагментов - Р-ОН и НО-СН2 , соответственно результате образуются мономерные, димерные (сдвоенные) или примерные (утроенные) кислоты, представляющие собой звенья, из которых была собрана цепь ДНК.
Участие ДНК и РНК в синтезе белков - одна из основных функций нуклеиновых кислот. Белки - важнейшие компоненты каждого живого организма. Мышцы, внутренние органы, костная ткань, кожный и волосяной покров млекопитающих состоят из белков. Это полимерные соединения, которые собираются в живом организме из различных аминокислот. В такой сборке управляющую роль играют нуклеиновые кислоты, процесс проходит в две стадии, причем на каждой из них определяющий фактор - взаимоориентация азотсодержащих гетероциклов ДНК и РНК.
Основная задача ДНК - хранить записанную информацию и предоставлять в тот момент, когда начинается синтез белков. В связи с этим понятна повышенная химическая устойчивость ДНК в сравнении с РНК.
Природа позаботилась о том, чтобы сохранить по возможности основную информацию неприкосновенной.

Химические свойства ДНКВ воде ДНК образует вязкие растворы, при нагревании таких растворов до 60°С или при действии

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика