Разделы презентаций


Замечательные кривые 9 класс

Цели проекта Расширить кругозор учащихся, стимулировать их познавательную активность и творчество.Пополнить запас знаний учащихся по геометрии, изобразительному искусству, физике, оптике.Использовать материал проекта для оформления выставки и проведения внеклассного мероприятия.

Слайды и текст этой презентации

Слайд 1Замечательные кривые
Руководитель проекта – Попова Ольга Николаевна
учитель математики МОУ гимназии

№1
Выполнил проект: Чичканов Роман ученик 9А
Липецк
2011

Замечательные кривыеРуководитель проекта – Попова Ольга Николаевнаучитель математики МОУ гимназии №1Выполнил проект: Чичканов Роман ученик 9АЛипецк2011

Слайд 2Цели проекта
Расширить кругозор учащихся, стимулировать их познавательную активность и

творчество.

Пополнить запас знаний учащихся по геометрии, изобразительному искусству, физике, оптике.

Использовать

материал проекта для оформления выставки и проведения внеклассного мероприятия.
Цели проекта Расширить кругозор учащихся, стимулировать их познавательную активность и творчество.Пополнить запас знаний учащихся по геометрии, изобразительному

Слайд 3Конус
Расширить кругозор учащихся, стимулировать их познавательную активность и Все замечательные

кривые - эллипс, гипербола и парабола объединяются общим свойством. Каждая

из них может быть получена при пересечении конуса плоскостью.
Поэтому их называют КОНИЧЕСКИМИ СЕЧЕНИЯМИ
творчество.



КонусРасширить кругозор учащихся, стимулировать их познавательную активность и Все замечательные кривые - эллипс, гипербола и парабола объединяются

Слайд 4Эллипс
О свойствах эллипсов во всех подробностях могут рассказать специалисты, изучающие

движение небесных тел. Согласно закону, открытому в начале XVII в.

немецким астрономом Иоганном Кеплером, все планеты движутся вокруг Солнца по орбитам, имеющим форму эллипса.




ЭллипсО свойствах эллипсов во всех подробностях могут рассказать специалисты, изучающие движение небесных тел. Согласно закону, открытому в

Слайд 5Применение свойств эллипса
Распространение акустических волн используется архитекторами для создания поразительных

звуковых эффектов: «говорящих» бюстов, «магического» шёпота, «потусторонних» звуков (рис). Это

свойство лежит в основе интересного акустического эффекта, наблюдаемого в некоторых пещерах и искусственных сооружений, своды которых имеют эллиптическую форму: если находиться в одном из фокусов, то речь человека, стоящего в другом фокусе, слышна так хорошо, как будто он находится рядом, хотя на самом деле расстояние велико.






Применение свойств эллипсаРаспространение акустических волн используется архитекторами для создания поразительных звуковых эффектов: «говорящих» бюстов, «магического» шёпота, «потусторонних»

Слайд 6Парабола
Парабола обладает оптическим свойством: все лучи, исходящие из источника света,

находящегося в фокусе параболы, после отражения оказываются направленными параллельно её

оси. Это свойство параболы используется при изготовлении прожекторов, автомобильных фар, карманных фонариков, зеркала которых имеют вид параболоидов вращения.







ПараболаПарабола обладает оптическим свойством: все лучи, исходящие из источника света, находящегося в фокусе параболы, после отражения оказываются

Слайд 7Гипербола
Частный случай гиперболы – зона слышимости звука пролетающего самолёта. Если

самолёт движется со сверхзвуковой скоростью, то в воздухе зона слышимости

образует конус. Поверхность Земли может приближённо считаться плоскостью, рассекающей этот конус.








ГиперболаЧастный случай гиперболы – зона слышимости звука пролетающего самолёта. Если самолёт движется со сверхзвуковой скоростью, то в

Слайд 8Спираль Архимеда
По спирали Архимеда идёт, например, звуковая дорожка. Одна из

деталей швейной машинки – механизм для равномерного наматывания нити на

шпульку – имеет форму спирали Архимеда










Спираль АрхимедаПо спирали Архимеда идёт, например, звуковая дорожка. Одна из деталей швейной машинки – механизм для равномерного

Слайд 9Циклоида
Движение шарика происходит по циклоиде, и, следовательно, на период его

колебаний не влияет отклонения шарика от вертикали, т.е. амплитуда колебаний.

В 1696 году Даниил Бернулли (1700-1782) швейцарский учёный открыл другое замечательное свойство этой кривой. По циклоиде при отсутствии трения частица под действием силы тяжести скатывается из заданной точки в другую за наименьшее время. Это кривая наибыстрейшего спуска. Иначе говоря, скатываясь по снежной горке, профиль которой выполнен в виде циклоиды, мы окажемся у основания горки быстрее, чем в случае другой формы горки.












ЦиклоидаДвижение шарика происходит по циклоиде, и, следовательно, на период его колебаний не влияет отклонения шарика от вертикали,

Слайд 10Кардиоида и улитка Паскаля
Понаблюдаем за какой-нибудь точкой окружности, когда последняя

катится по внешней стороне неподвижной окружности равного радиуса. Траекторией точки

будет КАРДИОИДА. Такое название она получила из-за сходства с сердцем (греческое слово «кардио» означает «сердце»). Если, точку, описывающую кривую, взять не на самой окружности, а несколько сбоку, то получим кривую, называемую улиткой Паскаля.
Улитка Паскаля применяется для вычерчивания профиля эксцентрика, если требуется, чтобы скользящий по профилю стержень совершал гармонические колебания. Такие механизмы отличаются плавностью возвратно-поступательного движения стержня (например, в механике автомашин).














Кардиоида и улитка ПаскаляПонаблюдаем за какой-нибудь точкой окружности, когда последняя катится по внешней стороне неподвижной окружности равного

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика