Разделы презентаций


Big Data Analytics and Applications

Содержание

VelocityValueVolumeVariety

Слайды и текст этой презентации

Слайд 1Big Data Analytics and Applications
Pavlovskiy E.N., Ph.D. head of the Stream

Data Analytics and Machine Learning lab NSU
http://bigdata.nsu.ru

Big Data Analytics and ApplicationsPavlovskiy E.N., Ph.D. head of the Stream Data Analytics and Machine Learning lab

Слайд 2Velocity
Value
Volume
Variety

VelocityValueVolumeVariety

Слайд 3Big Data are not data!
Technology for gathering, storage, processing, and

utilize
Method of data processing and representation
Problem of resource lack
Social phenomenon

Data

of big volume, variety, velocity, distributed
Big potential value
Big Data are not data!Technology for gathering, storage, processing, and utilizeMethod of data processing and representationProblem of

Слайд 4Paradigm shift
Subject of labour is not a program, but hypothesis

and data

Paradigm shiftSubject of labour is not a program, but hypothesis and data

Слайд 5Paradigm shift
More sources – higher veracity
More data – higher accuracy
More

data – lower quality requirements
High-speed algorithms: O(N) or O(NlogN)
Unmovable data

=> parallelism and map reduce
Structure decline => information extraction
Paradigm shiftMore sources – higher veracityMore data – higher accuracyMore data – lower quality requirementsHigh-speed algorithms: O(N)

Слайд 9Problems in Russian Big Data
No depersonalization culture (FL-152)
No understanding of

potential value
Insufficient competence in statistics
Absence of data brokers
Highly risked data

analytics projects
Lack of data
Problems in Russian Big DataNo depersonalization culture (FL-152)No understanding of potential valueInsufficient competence in statisticsAbsence of data

Слайд 10Big Data education in Russia

Big Data education in Russia

Слайд 11Master programs
HSE:
Big Data Systems
Data Sciences
MSU:
«Intellectual analysis of big data»
«Big Data:

infrastructure and solution technique»
NSU
Big Data Analytics
Computer modeling

Master programsHSE:Big Data SystemsData SciencesMSU:«Intellectual analysis of big data»«Big Data: infrastructure and solution technique»NSUBig Data AnalyticsComputer modeling

Слайд 12Online
1 week to 1 year
Coursera, edX (http://rusbase.com/list/bigdatye-kursy/)
Intuit (Introduction to

Big Data Analytics) http://bit.ly/IntuitBDA

Online1 week to 1 yearCoursera, edX (http://rusbase.com/list/bigdatye-kursy/) Intuit (Introduction to Big Data Analytics) http://bit.ly/IntuitBDA

Слайд 13Additional education
1 week - 3 month - 2 years
Yandex Data

Analysis School – https://yandexdataschool.ru/

Digital October – http://newprolab.ru

Beeline - http://bigdata.beeline.digital/datamba



Expasoft – http://expasoft.com/edu/

Additional education1 week - 3 month - 2 yearsYandex Data Analysis School – https://yandexdataschool.ru/Digital October – http://newprolab.ru

Слайд 14NSU Big Data Strategy

NSU Big Data Strategy

Слайд 15Syllabus of Master program

Syllabus of Master program

Слайд 16Challenges
1st place, 2015, AVITO

1st place, 2015, eKapusta

4th place among 619

teams, 2009, Data Mining Cup

Challenges1st place, 2015, AVITO1st place, 2015, eKapusta4th place among 619 teams, 2009, Data Mining Cup

Слайд 17Skull surface restore
No formulae
No negative examples
Neural networks, autoencoders

Skull surface restoreNo formulaeNo negative examplesNeural networks, autoencoders

Слайд 18Deep learning
Unsupervised

Deep learningUnsupervised

Слайд 19Semantic segmentation
http://arxiv.org/pdf/1511.00561v2.pdf

Semantic segmentationhttp://arxiv.org/pdf/1511.00561v2.pdf

Слайд 20Van Gogh Ivan Gogov
Alex J. Champandard. Semantic Style Transfer and Turning

Two-Bit Doodles into Fine Artworks. 2016

Van Gogh	Ivan GogovAlex J. Champandard. Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artworks. 2016

Слайд 21Paintings
http://tinyclouds.org/colorize/

Paintingshttp://tinyclouds.org/colorize/

Слайд 22Articles for revision
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Articles for revisionhttp://karpathy.github.io/2015/05/21/rnn-effectiveness/

Слайд 23Pushkin A.I.
Зафонствуя попруг, Ивисшивый чела, На воспопе днего, Я могина бесслужел, Катирей свети довой, Из

увядебиле меня, И на гразой шле, далодной Вольностью примстают; Я, водешил перцов миренья?
N.I.

Putincev, stream data analytics and machine learning lab NSU
Pushkin A.I.Зафонствуя попруг, Ивисшивый чела, На воспопе днего, Я могина бесслужел, Катирей свети довой, Из увядебиле меня,

Слайд 24Thank you!
http://bigdata.nsu.ru
Evgeniy Pavlovskiy, head of the SDAML N*SU e@expasoft.ru, +79139117907

Thank you!http://bigdata.nsu.ru Evgeniy Pavlovskiy, head of the SDAML N*SU e@expasoft.ru, +79139117907

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика