Разделы презентаций


Методы решения квадратного уравнения

Содержание

Цель урока:Обобщить и систематизировать изученный материал по теме: «Квадратные уравнения».Рассмотреть несколько способов решения одной задачи и научиться выбирать из них наиболее оригинальный , оптимальный.Познакомиться с новыми приёмам устного решения квадратных уравнений.

Слайды и текст этой презентации

Слайд 1Урок одной задачи.


Методы
решения квадратного
уравнения.

Урок одной задачи. Методы решения квадратного уравнения.

Слайд 2Цель урока:
Обобщить и систематизировать изученный материал по теме: «Квадратные уравнения».


Рассмотреть

несколько способов решения одной задачи и научиться выбирать из них

наиболее оригинальный , оптимальный.

Познакомиться с новыми приёмам устного решения квадратных уравнений.

Цель урока:Обобщить и систематизировать изученный материал по теме: «Квадратные уравнения».Рассмотреть несколько способов решения одной задачи и научиться

Слайд 3Человеку, изучающему алгебру, часто полезнее решить одну задачу тремя различными

способами, чем решать три-четыре различные задачи.

Решая одну задачу различными способами,

можно путем сравнения выяснить, какой из них короче и эффективнее. Так вырабатывается опыт.
У.У. Сойер

Человеку, изучающему алгебру, часто полезнее решить одну задачу тремя различными способами, чем решать три-четыре различные задачи.Решая одну

Слайд 4 Квадратным уравнением называется

уравнение вида

ax2+ bx + c = 0, а ≠ 0

где х ─неизвестное, a,b,c ─заданные числа, а называют старшим коэффициентом, b─вторым коэффициентом, c ─ свободным членом.

Неполные квадратные уравнения
(если хотя бы один из коэффициентов
b = 0 или c = 0)

Полные квадратные уравнения

приведенные
(если а = 1 )
х2 + px +q = 0

ax2 + bx + c = 0
а ≠ 0

неприведенные


ax2 + c = 0,
a≠0, b=0.

ax2=0,a≠0,
b=0,c=0.

ax2+bx=0,
a≠0,c=0.

Квадратным уравнением называется уравнение вида

Слайд 51) 2х² – х + 3 = 0

2) х² - 9х = 0
3) 4х + х² - 1 = 0 4) 2х – 5 = 0
5) 0,3 - 0,2х - х² = 0 6) 5х² = 0
7) -7х + х - 0,5 = 0 8) 49х² = 0


Какое из этих уравнений не является квадратным?

Назовите неполные квадратные уравнения.

Назовите приведенные квадратные уравнения.

Какие уравнения можно решить по формуле корней квадратного уравнения?

Какие уравнения можно решить разложением на множители, выделением квадрата двучлена, извлечением квадратного корня?

1)   2х² – х + 3 = 0

Слайд 6
Найдите в каждой группе уравнений «лишнее»:


А: 1. 3х2−х

= 0,

Б: 1. х2 −7х +1=0,
2. х2 −25 = 0, 2. 7х2 − 4х +8 = 0,
3. 4х2 + х −3 = 0, 3. х2 + 4х −4 = 0,
4. 4х2 = 0. 4. х2 −5х −3 = 0.

Не решая уравнение
х2 −8х + 7 = 0.
Найдите:
а) сумму корней:
б) произведение корней:
в) корни данного уравнения:

Найдите в каждой группе уравнений «лишнее»: А: 1. 3х2−х = 0,

Слайд 7ах2+вх+с=0, а≠0.
D=в2-4ас



D


х1,2= -


D>0,
то х1=

х2=

Первый
способ( по общей формуле):

С 1591 г. мы пользуемся формулами при решении квадратных уравнений

ах2+вх+с=0, а≠0.D=в2-4асD0, то х1=

Слайд 8Задание 1: Решите квадратные уравнения :

1. 2х2-5х+2=0,


3. 2х2-3х+2=0,
4. 4х2-12х+9=0.
х1= ½,

х2=2.
решений нет.
х1=1,5, х2=1,5.

Задание 1: Решите квадратные уравнения :1.  2х2-5х+2=0,    3.  2х2-3х+2=0,4.  4х2-12х+9=0.

Слайд 9 Уравнение, вида х2+pх+q=0, называется приведённым. Его корни можно

найти по теореме, обратной теореме Виета:

х1+х2=-p,
х1∙х2=q.

Например,
уравнение х2-3х+2=0
имеет корни х1=2, х2=1
так как х1+х2=3, х1∙х2=2.

Второй способ( по т., обратной теореме Виета):

Уравнение, вида х2+pх+q=0, называется приведённым. Его корни можно найти по теореме, обратной теореме Виета:

Слайд 10Задание 2. Решите приведённые квадратные уравнения по теореме, обратной теореме

Виета.
х2+10х+9=0,
х2+7х+12=0,
х2-10х-24=0.
х1=-9,х2=-1.
х1=-4,х2=-3.
х1=12,х2=-2.

Задание 2. Решите приведённые квадратные уравнения по теореме, обратной теореме Виета. х2+10х+9=0, х2+7х+12=0, х2-10х-24=0.х1=-9,х2=-1.х1=-4,х2=-3.х1=12,х2=-2.

Слайд 11Корни уравнения вида х2+pх+q=0 можно найти по формуле:
Третий способ(

формула корней приведенного квадратного уравнения):
Задание 3: Решите квадратные уравнения по

данной формуле:

х2-10х-24=0,
х2-16х+60=0

Корни уравнения вида х2+pх+q=0 можно найти по формуле: Третий способ( формула корней приведенного квадратного уравнения):Задание 3: Решите

Слайд 12 Решить квадратное уравнение можно способом «переброски». Этот способ

применяют, когда можно легко найти корни уравнения, используя теорему Виета

и, что самое важное, когда дискриминант - точный квадрат.

Например: Решим уравнение 2х2-11х+15=0.
«Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение: у2-11у+30=0.
По теореме, обратной теореме Виета у1= 5,у2= 6. тогда х1=у1/2, х2=у2/2; т.е. х1=2,5 , х2=3.

Четвёртый способ( способ « переброски»):

Решить квадратное уравнение можно способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения,

Слайд 13 Корни 9 и (-2).



Ответ :

Решаем, используя метод «переброски»

Получим уравнение

Делим числа 9 и ( -2) на 6:

Корни 9 и (-2).

Слайд 14Задание 3: Решите уравнения, используя метод «переброски»:
1. 2х2-9х+9=0,
2. 10х2-11х+3=0,
3. 3х2+11х+6=0
х1=1,5

, х2=3.
х1=0,5 ,х2=0,6.
х1=-3,х2=- .

Задание 3: Решите уравнения, используя метод «переброски»:1. 2х2-9х+9=0,2. 10х2-11х+3=0,3. 3х2+11х+6=0х1=1,5 , х2=3.х1=0,5 ,х2=0,6.х1=-3,х2=-    .

Слайд 15Пусть дано квадратное уравнение ах2+вх+с=0, где

а≠0.
1.Если

а+в+с=0(т.е.сумма коэффициентов
уравнения равна нулю), то х1=1,х2=с/а.
Например: 345х2-137х-208=0 (345-137-208=0), значит,
х1= 1,х2= - 208/345.
2.Если а-в+с=0 (или в=а+с), то х1=-1,х2= - с/а.
Например, 313х2+326х+13=0 (326=313+13), значит
х1=-1,х2=-13/313.

Пятый способ: « Способ коэффициентов»

Пусть дано квадратное уравнение ах2+вх+с=0, где          а≠0.

Слайд 161. 5х2-7х+2=0;
2. 3х2+5х-8=0;
3. 11х2+25х-36=0;
4. 11х2+27х+16=0;
5.

939х2+978х+39=0.
Задание 4: Решите квадратные уравнения методом «коэффициентов»:

х1=1,х2= .
х1=1,х2=-

.
х1=1,х2=- .
х1=-1,х2=- .
х1=-1,х2=- .
1.  5х2-7х+2=0;2.  3х2+5х-8=0;3.  11х2+25х-36=0;4.  11х2+27х+16=0;5.  939х2+978х+39=0.Задание 4: Решите квадратные уравнения методом «коэффициентов»:х1=1,х2=

Слайд 17Урок одной задачи.

4х2-12х+8=0
Решить данное уравнение:
По общей формуле;
По теореме, обратной

теореме Виета;
По формуле для нахождения корней приведенного квадратного уравнения;
Способом «

переброса»;
Способом коэффициентов.
Урок одной задачи. 4х2-12х+8=0Решить данное уравнение:По общей формуле;По теореме, обратной теореме Виета;По формуле для нахождения корней приведенного

Слайд 18Выводы:

данные приёмы решения заслуживают внимания, поскольку

они не отражены в школьных учебниках
математики;

овладение данными приёмами

поможет вам экономить время и эффективно решать уравнения;

потребность в быстром решении обусловлена применением тестовой системы выпускных экзаменов.
Выводы: данные приёмы решения заслуживают внимания,   поскольку они не отражены в школьных учебниках математики; овладение

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика